Spaces:
Sleeping
Sleeping
File size: 17,683 Bytes
a57726b 36380d7 a57726b 36380d7 22bc02d a57726b 36380d7 a57726b 22bc02d a57726b 22bc02d a57726b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import numpy as np
import cv2, os, sys, subprocess, platform, torch
from tqdm import tqdm
from PIL import Image
from scipy.io import loadmat
from moviepy.editor import AudioFileClip, VideoFileClip
sys.path.insert(0, 'third_part')
sys.path.insert(0, 'third_part/GPEN')
# 3dmm extraction
from .third_part.face3d.util.preprocess import align_img
from .third_part.face3d.util.load_mats import load_lm3d
from .third_part.face3d.extract_kp_videos import KeypointExtractor
# face enhancement
from .third_part.GPEN.gpen_face_enhancer import FaceEnhancement
# # expression control
# from third_part.ganimation_replicate.model.ganimation import GANimationModel
from .utils import audio
from .utils.ffhq_preprocess import Croper
from .utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image
from .utils.inference_utils import Laplacian_Pyramid_Blending_with_mask, face_detect, load_model, options, split_coeff, \
trans_image, transform_semantic, find_crop_norm_ratio, load_face3d_net, exp_aus_dict
import warnings
warnings.filterwarnings("ignore")
def video_lipsync_correctness(face, audio_path, outfile=None, tmp_dir="temp", crop=[0, -1, 0, -1], re_preprocess=False, exp_img="neutral", face3d_net_path="checkpoints/face3d_pretrain_epoch_20.pth", one_shot=False, up_face="original", LNet_batch_size=16, without_rl1=False, static=False):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('[Info] Using {} for inference.'.format(device))
os.makedirs(os.path.join('temp', tmp_dir), exist_ok=True)
enhancer = FaceEnhancement(base_dir='checkpoints', size=512, model='GPEN-BFR-512', use_sr=False, \
sr_model='rrdb_realesrnet_psnr', channel_multiplier=2, narrow=1, device=device)
base_name = face.split('/')[-1]
print('base_name',base_name)
if os.path.isfile(face) and face.split('.')[1] in ['jpg', 'png', 'jpeg']:
static = True
if not os.path.isfile(face):
raise ValueError('--face argument must be a valid path to video/image file')
elif face.split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(face)]
fps = fps
else:
video_stream = cv2.VideoCapture(face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
y1, y2, x1, x2 = crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print ("[Step 0] Number of frames available for inference: "+str(len(full_frames)))
# face detection & cropping, cropping the first frame as the style of FFHQ
croper = Croper('checkpoints/shape_predictor_68_face_landmarks.dat')
full_frames_RGB = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames]
full_frames_RGB, crop, quad = croper.crop(full_frames_RGB, xsize=512)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
oy1, oy2, ox1, ox2 = cly+ly, min(cly+ry, full_frames[0].shape[0]), clx+lx, min(clx+rx, full_frames[0].shape[1])
# original_size = (ox2 - ox1, oy2 - oy1)
frames_pil = [Image.fromarray(cv2.resize(frame,(256,256))) for frame in full_frames_RGB]
# get the landmark according to the detected face.
if not os.path.isfile('temp/'+base_name+'_landmarks.txt') or re_preprocess:
print('[Step 1] Landmarks Extraction in Video.')
kp_extractor = KeypointExtractor()
lm = kp_extractor.extract_keypoint(frames_pil, 'temp/'+base_name+'_landmarks.txt')
else:
print('[Step 1] Using saved landmarks.')
lm = np.loadtxt('temp/'+base_name+'_landmarks.txt').astype(np.float32)
lm = lm.reshape([len(full_frames), -1, 2])
if not os.path.isfile('temp/'+base_name+'_coeffs.npy') or exp_img is not None or re_preprocess:
net_recon = load_face3d_net(face3d_net_path, device)
lm3d_std = load_lm3d('checkpoints/BFM_Fitting')
video_coeffs = []
for idx in tqdm(range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:"):
frame = frames_pil[idx]
W, H = frame.size
lm_idx = lm[idx].reshape([-1, 2])
if np.mean(lm_idx) == -1:
lm_idx = (lm3d_std[:, :2]+1) / 2.
lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1)
else:
lm_idx[:, -1] = H - 1 - lm_idx[:, -1]
trans_params, im_idx, lm_idx, _ = align_img(frame, lm_idx, lm3d_std)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
im_idx_tensor = torch.tensor(np.array(im_idx)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
with torch.no_grad():
coeffs = split_coeff(net_recon(im_idx_tensor))
pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs}
pred_coeff = np.concatenate([pred_coeff['id'], pred_coeff['exp'], pred_coeff['tex'], pred_coeff['angle'],\
pred_coeff['gamma'], pred_coeff['trans'], trans_params[None]], 1)
video_coeffs.append(pred_coeff)
semantic_npy = np.array(video_coeffs)[:,0]
np.save('temp/'+base_name+'_coeffs.npy', semantic_npy)
else:
print('[Step 2] Using saved coeffs.')
semantic_npy = np.load('temp/'+base_name+'_coeffs.npy').astype(np.float32)
# generate the 3dmm coeff from a single image
if exp_img is not None and ('.png' in exp_img or '.jpg' in exp_img):
print('extract the exp from',exp_img)
exp_pil = Image.open(exp_img).convert('RGB')
lm3d_std = load_lm3d('third_part/face3d/BFM')
W, H = exp_pil.size
kp_extractor = KeypointExtractor()
lm_exp = kp_extractor.extract_keypoint([exp_pil], 'temp/'+base_name+'_temp.txt')[0]
if np.mean(lm_exp) == -1:
lm_exp = (lm3d_std[:, :2] + 1) / 2.
lm_exp = np.concatenate(
[lm_exp[:, :1] * W, lm_exp[:, 1:2] * H], 1)
else:
lm_exp[:, -1] = H - 1 - lm_exp[:, -1]
trans_params, im_exp, lm_exp, _ = align_img(exp_pil, lm_exp, lm3d_std)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
im_exp_tensor = torch.tensor(np.array(im_exp)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
with torch.no_grad():
expression = split_coeff(net_recon(im_exp_tensor))['exp'][0]
del net_recon
elif exp_img == 'smile':
expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_mouth'])[0]
else:
print('using expression center')
expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_center'])[0]
# load DNet, model(LNet and ENet)
D_Net, model = load_model(device,DNet_path='checkpoints/DNet.pt',LNet_path='checkpoints/LNet.pth',ENet_path='checkpoints/ENet.pth')
if not os.path.isfile('temp/'+base_name+'_stablized.npy') or re_preprocess:
imgs = []
for idx in tqdm(range(len(frames_pil)), desc="[Step 3] Stabilize the expression In Video:"):
if one_shot:
source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[0:1]
else:
source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[idx:idx+1]
ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy)
coeff = transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device)
# hacking the new expression
coeff[:, :64, :] = expression[None, :64, None].to(device)
with torch.no_grad():
output = D_Net(source_img, coeff)
img_stablized = np.uint8((output['fake_image'].squeeze(0).permute(1,2,0).cpu().clamp_(-1, 1).numpy() + 1 )/2. * 255)
imgs.append(cv2.cvtColor(img_stablized,cv2.COLOR_RGB2BGR))
np.save('temp/'+base_name+'_stablized.npy',imgs)
del D_Net
else:
print('[Step 3] Using saved stabilized video.')
imgs = np.load('temp/'+base_name+'_stablized.npy')
torch.cuda.empty_cache()
if not audio_path.endswith('.wav'):
# command = 'ffmpeg -loglevel error -y -i {} -strict -2 {}'.format(audio_path, 'temp/{}/temp.wav'.format(tmp_dir))
# subprocess.call(command, shell=True)
converted_audio_path = os.path.join('temp', tmp_dir, 'temp.wav')
audio_clip = AudioFileClip(audio_path)
audio_clip.write_audiofile(converted_audio_path, codec='pcm_s16le')
audio_clip.close()
audio_path = converted_audio_path
# audio_path = 'temp/{}/temp.wav'.format(tmp_dir)
wav = audio.load_wav(audio_path, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80./fps, 0, []
while True:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks)))
imgs = imgs[:len(mel_chunks)]
full_frames = full_frames[:len(mel_chunks)]
lm = lm[:len(mel_chunks)]
imgs_enhanced = []
for idx in tqdm(range(len(imgs)), desc='[Step 5] Reference Enhancement'):
img = imgs[idx]
pred, _, _ = enhancer.process(img, img, face_enhance=True, possion_blending=False)
imgs_enhanced.append(pred)
gen = datagen(imgs_enhanced.copy(), mel_chunks, full_frames, None, (oy1,oy2,ox1,ox2), face, static, LNet_batch_size, img_size=384)
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/{}/result.mp4'.format(tmp_dir), cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_w, frame_h))
# if up_face != 'original':
# instance = GANimationModel()
# instance.initialize()
# instance.setup()
kp_extractor = KeypointExtractor()
for i, (img_batch, mel_batch, frames, coords, img_original, f_frames) in enumerate(tqdm(gen, desc='[Step 6] Lip Synthesis:', total=int(np.ceil(float(len(mel_chunks)) / LNet_batch_size)))):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
img_original = torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device)/255. # BGR -> RGB
with torch.no_grad():
incomplete, reference = torch.split(img_batch, 3, dim=1)
pred, low_res = model(mel_batch, img_batch, reference)
pred = torch.clamp(pred, 0, 1)
if up_face in ['sad', 'angry', 'surprise']:
tar_aus = exp_aus_dict[up_face]
else:
pass
if up_face == 'original':
cur_gen_faces = img_original
# else:
# test_batch = {'src_img': torch.nn.functional.interpolate((img_original * 2 - 1), size=(128, 128), mode='bilinear'),
# 'tar_aus': tar_aus.repeat(len(incomplete), 1)}
# instance.feed_batch(test_batch)
# instance.forward()
# cur_gen_faces = torch.nn.functional.interpolate(instance.fake_img / 2. + 0.5, size=(384, 384), mode='bilinear')
if without_rl1 is not False:
incomplete, reference = torch.split(img_batch, 3, dim=1)
mask = torch.where(incomplete==0, torch.ones_like(incomplete), torch.zeros_like(incomplete))
pred = pred * mask + cur_gen_faces * (1 - mask)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
torch.cuda.empty_cache()
for p, f, xf, c in zip(pred, frames, f_frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
ff = xf.copy()
ff[y1:y2, x1:x2] = p
restored_img = ff
mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0]
mouse_mask = np.zeros_like(restored_img)
tmp_mask = enhancer.faceparser.process(restored_img[y1:y2, x1:x2], mm)[0]
mouse_mask[y1:y2, x1:x2]= cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.
height, width = ff.shape[:2]
restored_img, ff, full_mask = [cv2.resize(x, (512, 512)) for x in (restored_img, ff, np.float32(mouse_mask))]
img = Laplacian_Pyramid_Blending_with_mask(restored_img, ff, full_mask[:, :, 0], 10)
pp = np.uint8(cv2.resize(np.clip(img, 0 ,255), (width, height)))
pp, orig_faces, enhanced_faces = enhancer.process(pp, xf, bbox=c, face_enhance=False, possion_blending=True)
out.write(pp)
out.release()
if not os.path.isdir(os.path.dirname(outfile)):
os.makedirs(os.path.dirname(outfile), exist_ok=True)
# command = 'ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, 'temp/{}/result.mp4'.format(tmp_dir), outfile)
# subprocess.call(command, shell=platform.system() != 'Windows')
video_path = 'temp/{}/result.mp4'.format(tmp_dir)
audio_clip = AudioFileClip(audio_path)
video_clip = VideoFileClip(video_path)
video_clip = video_clip.set_audio(audio_clip)
# Write the result to the output file
video_clip.write_videofile(outfile, codec='libx264', audio_codec='aac')
print('outfile:', outfile)
# frames:256x256, full_frames: original size
def datagen(frames, mels, full_frames, frames_pil, cox, face, static, LNet_batch_size, img_size):
img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = [], [], [], [], [], []
base_name = face.split('/')[-1]
refs = []
image_size = 256
# original frames
kp_extractor = KeypointExtractor()
fr_pil = [Image.fromarray(frame) for frame in frames]
lms = kp_extractor.extract_keypoint(fr_pil, 'temp/'+base_name+'x12_landmarks.txt')
frames_pil = [ (lm, frame) for frame,lm in zip(fr_pil, lms)] # frames is the croped version of modified face
crops, orig_images, quads = crop_faces(image_size, frames_pil, scale=1.0, use_fa=True)
inverse_transforms = [calc_alignment_coefficients(quad + 0.5, [[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]]) for quad in quads]
del kp_extractor.detector
oy1,oy2,ox1,ox2 = cox
face_det_results = face_detect(full_frames, face_det_batch_size=4, nosmooth=False, pads=[0, 20, 0, 0], jaw_correction=True, detector=None)
for inverse_transform, crop, full_frame, face_det in zip(inverse_transforms, crops, full_frames, face_det_results):
imc_pil = paste_image(inverse_transform, crop, Image.fromarray(
cv2.resize(full_frame[int(oy1):int(oy2), int(ox1):int(ox2)], (256, 256))))
ff = full_frame.copy()
ff[int(oy1):int(oy2), int(ox1):int(ox2)] = cv2.resize(np.array(imc_pil.convert('RGB')), (ox2 - ox1, oy2 - oy1))
oface, coords = face_det
y1, y2, x1, x2 = coords
refs.append(ff[y1: y2, x1:x2])
for i, m in enumerate(mels):
idx = 0 if static else i % len(frames)
frame_to_save = frames[idx].copy()
face = refs[idx]
oface, coords = face_det_results[idx].copy()
face = cv2.resize(face, (img_size, img_size))
oface = cv2.resize(oface, (img_size, img_size))
img_batch.append(oface)
ref_batch.append(face)
mel_batch.append(m)
coords_batch.append(coords)
frame_batch.append(frame_to_save)
full_frame_batch.append(full_frames[idx].copy())
if len(img_batch) >= LNet_batch_size:
img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch, ref_batch = [], [], [], [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, img_size//2:] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
|