Spaces:
Paused
Paused
File size: 1,380 Bytes
04c1e71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
"""This script is to generate training list files for Deep3DFaceRecon_pytorch
"""
import os
# save path to training data
def write_list(lms_list, imgs_list, msks_list, mode='train',save_folder='datalist', save_name=''):
save_path = os.path.join(save_folder, mode)
if not os.path.isdir(save_path):
os.makedirs(save_path)
with open(os.path.join(save_path, save_name + 'landmarks.txt'), 'w') as fd:
fd.writelines([i + '\n' for i in lms_list])
with open(os.path.join(save_path, save_name + 'images.txt'), 'w') as fd:
fd.writelines([i + '\n' for i in imgs_list])
with open(os.path.join(save_path, save_name + 'masks.txt'), 'w') as fd:
fd.writelines([i + '\n' for i in msks_list])
# check if the path is valid
def check_list(rlms_list, rimgs_list, rmsks_list):
lms_list, imgs_list, msks_list = [], [], []
for i in range(len(rlms_list)):
flag = 'false'
lm_path = rlms_list[i]
im_path = rimgs_list[i]
msk_path = rmsks_list[i]
if os.path.isfile(lm_path) and os.path.isfile(im_path) and os.path.isfile(msk_path):
flag = 'true'
lms_list.append(rlms_list[i])
imgs_list.append(rimgs_list[i])
msks_list.append(rmsks_list[i])
print(i, rlms_list[i], flag)
return lms_list, imgs_list, msks_list
|