Spaces:
Sleeping
Sleeping
File size: 20,881 Bytes
cfc39a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
import os
import sys
import argparse
import subprocess
import numpy as np
from tqdm import tqdm
from PIL import Image
from scipy.io import loadmat
import torch
import cv2
from cog import BasePredictor, Input, Path
sys.path.insert(0, "third_part")
sys.path.insert(0, "third_part/GPEN")
sys.path.insert(0, "third_part/GFPGAN")
# 3dmm extraction
from third_part.face3d.util.preprocess import align_img
from third_part.face3d.util.load_mats import load_lm3d
from third_part.face3d.extract_kp_videos import KeypointExtractor
# face enhancement
from third_part.GPEN.gpen_face_enhancer import FaceEnhancement
from third_part.GFPGAN.gfpgan import GFPGANer
# expression control
from third_part.ganimation_replicate.model.ganimation import GANimationModel
from utils import audio
from utils.ffhq_preprocess import Croper
from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image
from utils.inference_utils import (
Laplacian_Pyramid_Blending_with_mask,
face_detect,
load_model,
options,
split_coeff,
trans_image,
transform_semantic,
find_crop_norm_ratio,
load_face3d_net,
exp_aus_dict,
)
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
self.enhancer = FaceEnhancement(
base_dir="checkpoints",
size=512,
model="GPEN-BFR-512",
use_sr=False,
sr_model="rrdb_realesrnet_psnr",
channel_multiplier=2,
narrow=1,
device="cuda",
)
self.restorer = GFPGANer(
model_path="checkpoints/GFPGANv1.3.pth",
upscale=1,
arch="clean",
channel_multiplier=2,
bg_upsampler=None,
)
self.croper = Croper("checkpoints/shape_predictor_68_face_landmarks.dat")
self.kp_extractor = KeypointExtractor()
face3d_net_path = "checkpoints/face3d_pretrain_epoch_20.pth"
self.net_recon = load_face3d_net(face3d_net_path, "cuda")
self.lm3d_std = load_lm3d("checkpoints/BFM")
def predict(
self,
face: Path = Input(description="Input video file of a talking-head."),
input_audio: Path = Input(description="Input audio file."),
) -> Path:
"""Run a single prediction on the model"""
device = "cuda"
args = argparse.Namespace(
DNet_path="checkpoints/DNet.pt",
LNet_path="checkpoints/LNet.pth",
ENet_path="checkpoints/ENet.pth",
face3d_net_path="checkpoints/face3d_pretrain_epoch_20.pth",
face=str(face),
audio=str(input_audio),
exp_img="neutral",
outfile=None,
fps=25,
pads=[0, 20, 0, 0],
face_det_batch_size=4,
LNet_batch_size=16,
img_size=384,
crop=[0, -1, 0, -1],
box=[-1, -1, -1, -1],
nosmooth=False,
static=False,
up_face="original",
one_shot=False,
without_rl1=False,
tmp_dir="temp",
re_preprocess=False,
)
base_name = args.face.split("/")[-1]
if args.face.split(".")[1] in ["jpg", "png", "jpeg"]:
full_frames = [cv2.imread(args.face)]
args.static = True
fps = args.fps
else:
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
y1, y2, x1, x2 = args.crop
if x2 == -1:
x2 = frame.shape[1]
if y2 == -1:
y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
full_frames_RGB = [
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames
]
full_frames_RGB, crop, quad = self.croper.crop(full_frames_RGB, xsize=512)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
oy1, oy2, ox1, ox2 = (
cly + ly,
min(cly + ry, full_frames[0].shape[0]),
clx + lx,
min(clx + rx, full_frames[0].shape[1]),
)
# original_size = (ox2 - ox1, oy2 - oy1)
frames_pil = [
Image.fromarray(cv2.resize(frame, (256, 256))) for frame in full_frames_RGB
]
# get the landmark according to the detected face.
if (
not os.path.isfile("temp/" + base_name + "_landmarks.txt")
or args.re_preprocess
):
print("[Step 1] Landmarks Extraction in Video.")
lm = self.kp_extractor.extract_keypoint(
frames_pil, "./temp/" + base_name + "_landmarks.txt"
)
else:
print("[Step 1] Using saved landmarks.")
lm = np.loadtxt("temp/" + base_name + "_landmarks.txt").astype(np.float32)
lm = lm.reshape([len(full_frames), -1, 2])
if (
not os.path.isfile("temp/" + base_name + "_coeffs.npy")
or args.exp_img is not None
or args.re_preprocess
):
video_coeffs = []
for idx in tqdm(
range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:"
):
frame = frames_pil[idx]
W, H = frame.size
lm_idx = lm[idx].reshape([-1, 2])
if np.mean(lm_idx) == -1:
lm_idx = (self.lm3d_std[:, :2] + 1) / 2.0
lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1)
else:
lm_idx[:, -1] = H - 1 - lm_idx[:, -1]
trans_params, im_idx, lm_idx, _ = align_img(
frame, lm_idx, self.lm3d_std
)
trans_params = np.array(
[float(item) for item in np.hsplit(trans_params, 5)]
).astype(np.float32)
im_idx_tensor = (
torch.tensor(np.array(im_idx) / 255.0, dtype=torch.float32)
.permute(2, 0, 1)
.to(device)
.unsqueeze(0)
)
with torch.no_grad():
coeffs = split_coeff(self.net_recon(im_idx_tensor))
pred_coeff = {key: coeffs[key].cpu().numpy() for key in coeffs}
pred_coeff = np.concatenate(
[
pred_coeff["id"],
pred_coeff["exp"],
pred_coeff["tex"],
pred_coeff["angle"],
pred_coeff["gamma"],
pred_coeff["trans"],
trans_params[None],
],
1,
)
video_coeffs.append(pred_coeff)
semantic_npy = np.array(video_coeffs)[:, 0]
np.save("temp/" + base_name + "_coeffs.npy", semantic_npy)
else:
print("[Step 2] Using saved coeffs.")
semantic_npy = np.load("temp/" + base_name + "_coeffs.npy").astype(
np.float32
)
# generate the 3dmm coeff from a single image
if args.exp_img == "smile":
expression = torch.tensor(
loadmat("checkpoints/expression.mat")["expression_mouth"]
)[0]
else:
print("using expression center")
expression = torch.tensor(
loadmat("checkpoints/expression.mat")["expression_center"]
)[0]
# load DNet, model(LNet and ENet)
D_Net, model = load_model(args, device)
if (
not os.path.isfile("temp/" + base_name + "_stablized.npy")
or args.re_preprocess
):
imgs = []
for idx in tqdm(
range(len(frames_pil)),
desc="[Step 3] Stabilize the expression In Video:",
):
if args.one_shot:
source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[0:1]
else:
source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[idx : idx + 1]
ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy)
coeff = (
transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device)
)
# hacking the new expression
coeff[:, :64, :] = expression[None, :64, None].to(device)
with torch.no_grad():
output = D_Net(source_img, coeff)
img_stablized = np.uint8(
(
output["fake_image"]
.squeeze(0)
.permute(1, 2, 0)
.cpu()
.clamp_(-1, 1)
.numpy()
+ 1
)
/ 2.0
* 255
)
imgs.append(cv2.cvtColor(img_stablized, cv2.COLOR_RGB2BGR))
np.save("temp/" + base_name + "_stablized.npy", imgs)
del D_Net
else:
print("[Step 3] Using saved stabilized video.")
imgs = np.load("temp/" + base_name + "_stablized.npy")
torch.cuda.empty_cache()
if not args.audio.endswith(".wav"):
command = "ffmpeg -loglevel error -y -i {} -strict -2 {}".format(
args.audio, "temp/{}/temp.wav".format(args.tmp_dir)
)
subprocess.call(command, shell=True)
args.audio = "temp/{}/temp.wav".format(args.tmp_dir)
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError(
"Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again"
)
mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80.0 / fps, 0, []
while True:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks)))
imgs = imgs[: len(mel_chunks)]
full_frames = full_frames[: len(mel_chunks)]
lm = lm[: len(mel_chunks)]
imgs_enhanced = []
for idx in tqdm(range(len(imgs)), desc="[Step 5] Reference Enhancement"):
img = imgs[idx]
pred, _, _ = self.enhancer.process(
img, img, face_enhance=True, possion_blending=False
)
imgs_enhanced.append(pred)
gen = datagen(
imgs_enhanced.copy(), mel_chunks, full_frames, args, (oy1, oy2, ox1, ox2)
)
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter(
"temp/{}/result.mp4".format(args.tmp_dir),
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(frame_w, frame_h),
)
if args.up_face != "original":
instance = GANimationModel()
instance.initialize()
instance.setup()
# kp_extractor = KeypointExtractor()
for i, (
img_batch,
mel_batch,
frames,
coords,
img_original,
f_frames,
) in enumerate(
tqdm(
gen,
desc="[Step 6] Lip Synthesis:",
total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)),
)
):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(
device
)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(
device
)
img_original = (
torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device)
/ 255.0
) # BGR -> RGB
with torch.no_grad():
incomplete, reference = torch.split(img_batch, 3, dim=1)
pred, low_res = model(mel_batch, img_batch, reference)
pred = torch.clamp(pred, 0, 1)
if args.up_face in ["sad", "angry", "surprise"]:
tar_aus = exp_aus_dict[args.up_face]
else:
pass
if args.up_face == "original":
cur_gen_faces = img_original
else:
test_batch = {
"src_img": torch.nn.functional.interpolate(
(img_original * 2 - 1), size=(128, 128), mode="bilinear"
),
"tar_aus": tar_aus.repeat(len(incomplete), 1),
}
instance.feed_batch(test_batch)
instance.forward()
cur_gen_faces = torch.nn.functional.interpolate(
instance.fake_img / 2.0 + 0.5, size=(384, 384), mode="bilinear"
)
if args.without_rl1 is not False:
incomplete, reference = torch.split(img_batch, 3, dim=1)
mask = torch.where(
incomplete == 0,
torch.ones_like(incomplete),
torch.zeros_like(incomplete),
)
pred = pred * mask + cur_gen_faces * (1 - mask)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
torch.cuda.empty_cache()
for p, f, xf, c in zip(pred, frames, f_frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
ff = xf.copy()
ff[y1:y2, x1:x2] = p
# month region enhancement by GFPGAN
cropped_faces, restored_faces, restored_img = self.restorer.enhance(
ff, has_aligned=False, only_center_face=True, paste_back=True
)
# 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0]
mouse_mask = np.zeros_like(restored_img)
tmp_mask = self.enhancer.faceparser.process(
restored_img[y1:y2, x1:x2], mm
)[0]
mouse_mask[y1:y2, x1:x2] = (
cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.0
)
height, width = ff.shape[:2]
restored_img, ff, full_mask = [
cv2.resize(x, (512, 512))
for x in (restored_img, ff, np.float32(mouse_mask))
]
img = Laplacian_Pyramid_Blending_with_mask(
restored_img, ff, full_mask[:, :, 0], 10
)
pp = np.uint8(cv2.resize(np.clip(img, 0, 255), (width, height)))
pp, orig_faces, enhanced_faces = self.enhancer.process(
pp, xf, bbox=c, face_enhance=False, possion_blending=True
)
out.write(pp)
out.release()
output_file = "/tmp/output.mp4"
command = "ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}".format(
args.audio, "temp/{}/result.mp4".format(args.tmp_dir), output_file
)
subprocess.call(command, shell=True)
return Path(output_file)
# frames:256x256, full_frames: original size
def datagen(frames, mels, full_frames, args, cox):
img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = (
[],
[],
[],
[],
[],
[],
)
base_name = args.face.split("/")[-1]
refs = []
image_size = 256
# original frames
kp_extractor = KeypointExtractor()
fr_pil = [Image.fromarray(frame) for frame in frames]
lms = kp_extractor.extract_keypoint(
fr_pil, "temp/" + base_name + "x12_landmarks.txt"
)
frames_pil = [
(lm, frame) for frame, lm in zip(fr_pil, lms)
] # frames is the croped version of modified face
crops, orig_images, quads = crop_faces(
image_size, frames_pil, scale=1.0, use_fa=True
)
inverse_transforms = [
calc_alignment_coefficients(
quad + 0.5,
[[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]],
)
for quad in quads
]
del kp_extractor.detector
oy1, oy2, ox1, ox2 = cox
face_det_results = face_detect(full_frames, args, jaw_correction=True)
for inverse_transform, crop, full_frame, face_det in zip(
inverse_transforms, crops, full_frames, face_det_results
):
imc_pil = paste_image(
inverse_transform,
crop,
Image.fromarray(
cv2.resize(
full_frame[int(oy1) : int(oy2), int(ox1) : int(ox2)], (256, 256)
)
),
)
ff = full_frame.copy()
ff[int(oy1) : int(oy2), int(ox1) : int(ox2)] = cv2.resize(
np.array(imc_pil.convert("RGB")), (ox2 - ox1, oy2 - oy1)
)
oface, coords = face_det
y1, y2, x1, x2 = coords
refs.append(ff[y1:y2, x1:x2])
for i, m in enumerate(mels):
idx = 0 if args.static else i % len(frames)
frame_to_save = frames[idx].copy()
face = refs[idx]
oface, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
oface = cv2.resize(oface, (args.img_size, args.img_size))
img_batch.append(oface)
ref_batch.append(face)
mel_batch.append(m)
coords_batch.append(coords)
frame_batch.append(frame_to_save)
full_frame_batch.append(full_frames[idx].copy())
if len(img_batch) >= args.LNet_batch_size:
img_batch, mel_batch, ref_batch = (
np.asarray(img_batch),
np.asarray(mel_batch),
np.asarray(ref_batch),
)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
(
img_batch,
mel_batch,
frame_batch,
coords_batch,
img_original,
full_frame_batch,
ref_batch,
) = ([], [], [], [], [], [], [])
if len(img_batch) > 0:
img_batch, mel_batch, ref_batch = (
np.asarray(img_batch),
np.asarray(mel_batch),
np.asarray(ref_batch),
)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size // 2 :] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0
mel_batch = np.reshape(
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
)
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
|