File size: 21,190 Bytes
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3727de
7d6f952
5048131
20cd47a
 
 
 
4978fe4
20cd47a
 
7dac13b
da97815
20cd47a
 
 
 
 
 
 
 
4978fe4
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6f952
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad7dd5
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ff6d23
 
 
 
 
 
 
 
 
 
72454e4
4ff6d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20cd47a
 
4ff6d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20cd47a
4ff6d23
 
 
20cd47a
 
4ff6d23
 
 
20cd47a
4ff6d23
 
20cd47a
 
4ff6d23
 
20cd47a
4ff6d23
7d6f952
4ff6d23
 
7d6f952
4ff6d23
 
 
 
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aea41f
20cd47a
 
 
b07f9ec
20cd47a
c381ea3
20cd47a
 
 
 
 
 
 
c3727de
 
 
7e7b30f
c3727de
 
 
 
 
 
 
 
20cd47a
 
 
2dc6197
20cd47a
 
f6138ad
44dcd57
 
c3727de
d9e365d
c3727de
44dcd57
d480876
44dcd57
d480876
 
 
 
44dcd57
 
 
d0efd99
 
44dcd57
 
 
95397b0
44dcd57
 
 
 
 
c3727de
 
 
 
 
 
 
44dcd57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aea41f
44dcd57
 
 
 
 
 
 
 
 
 
 
1600e93
 
44dcd57
 
2138a37
70f18e6
 
 
 
44dcd57
70f18e6
44dcd57
 
14622e1
44dcd57
 
7d797d7
44dcd57
 
7d797d7
 
 
 
44dcd57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20cd47a
4978fe4
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d6f952
20cd47a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6764da3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
from flask import Flask, request, jsonify
import torch
import shutil
import os
import sys
from argparse import ArgumentParser
from time import strftime
from argparse import Namespace
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
# from src.utils.init_path import init_path
import tempfile
from openai import OpenAI
import threading
import elevenlabs
from elevenlabs import set_api_key, generate, play, clone
from flask_cors import CORS, cross_origin
# from flask_swagger_ui import get_swaggerui_blueprint
import uuid
import time
from PIL import Image
import moviepy.editor as mp
from videoretalking import inference_function

start_time = time.time()

class AnimationConfig:
    def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path):
        self.driven_audio = driven_audio_path
        self.source_image = source_image_path
        self.ref_eyeblink = None
        self.ref_pose = ref_pose_video_path
        self.checkpoint_dir = './checkpoints'
        self.result_dir = result_folder
        self.pose_style = pose_style
        self.batch_size = 2
        self.expression_scale = expression_scale
        self.input_yaw = None
        self.input_pitch = None
        self.input_roll = None
        self.enhancer = enhancer
        self.background_enhancer = None
        self.cpu = False
        self.face3dvis = False
        self.still = still  
        self.preprocess = preprocess
        self.verbose = False
        self.old_version = False
        self.net_recon = 'resnet50'
        self.init_path = None
        self.use_last_fc = False
        self.bfm_folder = './checkpoints/BFM_Fitting/'
        self.bfm_model = 'BFM_model_front.mat'
        self.focal = 1015.
        self.center = 112.
        self.camera_d = 10.
        self.z_near = 5.
        self.z_far = 15.
        self.device = 'cpu'


app = Flask(__name__)
CORS(app)

TEMP_DIR = None

app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None



def main(args):
    pic_path = args.source_image
    audio_path = args.driven_audio
    save_dir = args.result_dir
    pose_style = args.pose_style
    device = args.device
    batch_size = args.batch_size
    input_yaw_list = args.input_yaw
    input_pitch_list = args.input_pitch
    input_roll_list = args.input_roll
    ref_eyeblink = args.ref_eyeblink
    ref_pose = args.ref_pose
    preprocess = args.preprocess

    dir_path = os.path.dirname(os.path.realpath(__file__))
    current_root_path = dir_path
    print('current_root_path ',current_root_path)

    # sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)

    path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
    path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
    dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
    wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')

    audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
    audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
    
    audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
    audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')

    free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')

    if preprocess == 'full':
        mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
    else:
        mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
        facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')

    face_path = "/home/user/app/images/download_1.mp4"  # Replace with the path to your face image or video
    audio_path = "/home/user/app/images/audio_1.mp3"  # Replace with the path to your audio file
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')  # You can change suffix based on your file type
    temp_file_path = temp_file.name
    output_path = temp_file_path

    # Call the function
    inference_function.video_lipsync_correctness(
        face=face_path,
        audio_path=audio_path,
        face3d_net_path = path_of_net_recon_model,
        outfile=output_path,
        tmp_dir="temp",
        crop=[0, -1, 0, -1],
        re_preprocess=True,  # Set to True if you want to reprocess; False otherwise
        exp_img="neutral",  # Can be 'smile', 'neutral', or path to an expression image
        one_shot=False,
        up_face="original",  # Options: 'original', 'sad', 'angry', 'surprise'
        LNet_batch_size=16,
        without_rl1=False
    )

    # # preprocess_model = CropAndExtract(sadtalker_paths, device)
    # #init model
    # print(path_of_net_recon_model)
    # preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)

    # # audio_to_coeff = Audio2Coeff(sadtalker_paths,  device)
    # audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, 
    #                             audio2exp_checkpoint, audio2exp_yaml_path, 
    #                             wav2lip_checkpoint, device)
    # # animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
    # animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, 
    #                                         facerender_yaml_path, device)

    # first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
    # os.makedirs(first_frame_dir, exist_ok=True)
    # # first_coeff_path, crop_pic_path, crop_info =  preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
    #                                                                         #  source_image_flag=True, pic_size=args.size)

   
    # first_coeff_path, crop_pic_path, crop_info =  preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
    # print('first_coeff_path ',first_coeff_path)
    # print('crop_pic_path ',crop_pic_path)

    # if first_coeff_path is None:
    #     print("Can't get the coeffs of the input")
    #     return

    # if ref_eyeblink is not None:
    #     ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
    #     ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
    #     os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
    #     # ref_eyeblink_coeff_path, _, _ =  preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
    #     ref_eyeblink_coeff_path, _, _ =  preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
    # else:
    #     ref_eyeblink_coeff_path=None
    #     print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)

    # if ref_pose is not None:
    #     if ref_pose == ref_eyeblink:
    #         ref_pose_coeff_path = ref_eyeblink_coeff_path
    #     else:
    #         ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
    #         ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
    #         os.makedirs(ref_pose_frame_dir, exist_ok=True)
    #         # ref_pose_coeff_path, _, _ =  preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
    #         ref_pose_coeff_path, _, _ =  preprocess_model.generate(ref_pose, ref_pose_frame_dir)
    # else:
    #     ref_pose_coeff_path=None
    #     print('ref_eyeblink_coeff_path',ref_pose_coeff_path)

    # batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
    # coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)


    # if args.face3dvis:
    #     from src.face3d.visualize import gen_composed_video
    #     gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
  
    # # data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
    #                             # batch_size, input_yaw_list, input_pitch_list, input_roll_list,
    #                             # expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)


    # data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, 
    #                             batch_size, input_yaw_list, input_pitch_list, input_roll_list,
    #                             expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)

    # # result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
    #                             # enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)


    # result, base64_video,temp_file_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
    #                             enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
    
    # print('The video is generated')

    # video_clip = mp.VideoFileClip(temp_file_path)
    # duration = video_clip.duration
    
    # app.config['temp_response'] = base64_video
    # app.config['final_video_path'] = temp_file_path
    # app.config['final_video_duration'] = duration
    # return base64_video, temp_file_path, duration

    # shutil.move(result, save_dir+'.mp4')


    if not args.verbose:
        shutil.rmtree(save_dir)

def create_temp_dir():
    return tempfile.TemporaryDirectory()

def save_uploaded_file(file, filename,TEMP_DIR):
    unique_filename = str(uuid.uuid4()) + "_" + filename
    file_path = os.path.join(TEMP_DIR.name, unique_filename)
    file.save(file_path)
    return file_path

client = OpenAI(api_key="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")

def translate_text(text_prompt, target_language):
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[{"role": "system", "content": "You are a helpful language translator assistant."},
            {"role": "user", "content": f"Translate completely without hallucination, end to end and the ouput should just be the translation of the text prompt and nothing else, and give the following text to {target_language} language and the text is: {text_prompt}"},
        ],
        max_tokens = len(text_prompt) + 200 # Use the length of the input text
        # temperature=0.3,
        # stop=["Translate:", "Text:"]
    )
    return response

def chat_avatar(text_prompt):
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[{"role": "system", "content": "You are an interactive, conversational and helpful chatbot. Your role is to assist users by providing clear, engaging, and relevant only one liner responses responses based on their queries. Regardless of the language used by the user, you should always respond in English."},
            {"role": "user", "content": f"Hi! I need help with something. Can you assist me with the following: {text_prompt}"},
        ],
        max_tokens = len(text_prompt) + 300 # Use the length of the input text
        # temperature=0.3,
        # stop=["Translate:", "Text:"]
    )
    return response



@app.route("/run", methods=['POST'])
def generate_video():
    global TEMP_DIR
    TEMP_DIR = create_temp_dir()
    print('request:',request.method)
    try:
        if request.method == 'POST':
            # source_image = request.files['source_image']
            image_path = '/home/user/app/images/vibhu2.jpg'
            source_image = Image.open(image_path)
            text_prompt = request.form['text_prompt']
            
            print('Input text prompt: ',text_prompt)
            text_prompt = text_prompt.strip()
            if not text_prompt:
                return jsonify({'error': 'Input text prompt cannot be blank'}), 400
                
            voice_cloning = request.form.get('voice_cloning', 'no')
            target_language = request.form.get('target_language', 'original_text')
            print('target_language',target_language)
            pose_style = int(request.form.get('pose_style', 1))
            expression_scale = float(request.form.get('expression_scale', 1))
            enhancer = request.form.get('enhancer', None)
            voice_gender = request.form.get('voice_gender', 'male')
            still_str = request.form.get('still', 'False')
            still = still_str.lower() == 'false'
            print('still', still)
            preprocess = request.form.get('preprocess', 'crop')
            print('preprocess selected: ',preprocess)
            ref_pose_video = request.files.get('ref_pose', None)
    
            # if target_language != 'original_text':
            #     response = translate_text(text_prompt, target_language)
            #     # response = await translate_text_async(text_prompt, target_language)
            #     text_prompt = response.choices[0].message.content.strip()

            response = chat_avatar(text_prompt)
            text_prompt = response.choices[0].message.content.strip()
            app.config['text_prompt'] = text_prompt
            print('Final text prompt: ',text_prompt)
    
            source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
            print(source_image_path)
    
            # driven_audio_path = await voice_cloning_async(voice_cloning, voice_gender, text_prompt, user_voice)
    
            if voice_cloning == 'no':
                if voice_gender == 'male':
                    voice = 'echo'
                    print('Entering Audio creation using elevenlabs')
                    set_api_key("92e149985ea2732b4359c74346c3daee")
        
                    audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4)
                    with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
                        for chunk in audio:
                            temp_file.write(chunk)
                        driven_audio_path = temp_file.name
                        print('driven_audio_path',driven_audio_path)
                        print('Audio file saved using elevenlabs')
                    
                else:
                    voice = 'nova'
    
                    print('Entering Audio creation using whisper')
                    response = client.audio.speech.create(model="tts-1-hd",
                                                    voice=voice,
                                                    input = text_prompt)
    
                    print('Audio created using whisper')
                    with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
                        driven_audio_path = temp_file.name
                    
                    response.write_to_file(driven_audio_path)
                    print('Audio file saved using whisper')
    
            elif voice_cloning == 'yes':
                # user_voice = request.files['user_voice']
                user_voice = '/home/user/app/images/Recording.m4a'
    
                with tempfile.NamedTemporaryFile(suffix=".wav", prefix="user_voice_",dir=TEMP_DIR.name, delete=False) as temp_file:
                    with open(user_voice, 'rb') as source_file:
                        file_contents = source_file.read()
                        temp_file.write(file_contents)

                    temp_file.flush()
                    user_voice_path = temp_file.name
                    # user_voice.save(user_voice_path)
                    print('user_voice_path',user_voice_path)
    
                set_api_key("92e149985ea2732b4359c74346c3daee")
                voice = clone(name = "User Cloned Voice",
                            files = [user_voice_path] )
    
                audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
                with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
                    for chunk in audio:
                        temp_file.write(chunk)
                    driven_audio_path = temp_file.name
                    print('driven_audio_path',driven_audio_path)
                    
                #     elevenlabs.save(audio, driven_audio_path)
    
            save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
            result_folder = os.path.join(save_dir, "results")
            os.makedirs(result_folder, exist_ok=True)
    
            ref_pose_video_path = None
            if ref_pose_video:
                with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
                    ref_pose_video_path = temp_file.name
                    ref_pose_video.save(ref_pose_video_path)
                    print('ref_pose_video_path',ref_pose_video_path)
                    
    except Exception as e:
        app.logger.error(f"An error occurred: {e}")
        return "An error occurred", 500
    
    # Example of using the class with some hypothetical paths
    args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path)
        
    if torch.cuda.is_available() and not args.cpu:
        args.device = "cuda"
    else:
        args.device = "cpu"
        
    generation_thread = threading.Thread(target=main, args=(args,))
    app.config['generation_thread'] = generation_thread
    generation_thread.start()
    response_data = {"message": "Video generation started",
                    "process_id": generation_thread.ident}

    return jsonify(response_data)
    # base64_video = main(args)
    # return jsonify({"base64_video": base64_video})

    #else:
    #    return 'Unsupported HTTP method', 405

@app.route("/status", methods=["GET"])
def check_generation_status():
    global TEMP_DIR
    response = {"base64_video": "","text_prompt":"", "status": ""}
    process_id = request.args.get('process_id', None)

    # process_id is required to check the status for that specific process
    if process_id:
        generation_thread = app.config.get('generation_thread')
        if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive():
            return jsonify({"status": "in_progress"}), 200
        elif app.config.get('temp_response'):
            # app.config['temp_response']['status'] = 'completed'
            final_response = app.config['temp_response']
            response["base64_video"] = final_response
            response["text_prompt"] = app.config.get('text_prompt')
            response["duration"] = app.config.get('final_video_duration')
            response["status"] = "completed"

            final_video_path = app.config['final_video_path']
            print('final_video_path',final_video_path)


            if final_video_path and os.path.exists(final_video_path):
                os.remove(final_video_path)
                print("Deleted video file:", final_video_path)

            TEMP_DIR.cleanup()
            # print("Temporary Directory:", TEMP_DIR.name)
            # if TEMP_DIR:
            #     print("Contents of Temporary Directory:")
            #     for filename in os.listdir(TEMP_DIR.name):
            #         print(filename)
            # else:
            #     print("Temporary Directory is None or already cleaned up.")
            end_time = time.time()
            total_time = round(end_time - start_time, 2)
            print("Total time taken for execution:", total_time, " seconds")
            return jsonify(response)
    return jsonify({"error":"No process id provided"})

@app.route("/health", methods=["GET"])
def health_status():
    response = {"online": "true"}
    return jsonify(response)
if __name__ == '__main__':
    app.run(debug=True)