File size: 9,495 Bytes
5b1ae50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Fast Fourier Convolution NeurIPS 2020
# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf

import torch
import torch.nn as nn
import torch.nn.functional as F
# from models.modules.squeeze_excitation import SELayer
import torch.fft

class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        res = x * y.expand_as(x)
        return res


class FFCSE_block(nn.Module):
    def __init__(self, channels, ratio_g):
        super(FFCSE_block, self).__init__()
        in_cg = int(channels * ratio_g)
        in_cl = channels - in_cg
        r = 16

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.conv1 = nn.Conv2d(channels, channels // r,
                               kernel_size=1, bias=True)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
            channels // r, in_cl, kernel_size=1, bias=True)
        self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
            channels // r, in_cg, kernel_size=1, bias=True)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = x if type(x) is tuple else (x, 0)
        id_l, id_g = x

        x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
        x = self.avgpool(x)
        x = self.relu1(self.conv1(x))

        x_l = 0 if self.conv_a2l is None else id_l * \
            self.sigmoid(self.conv_a2l(x))
        x_g = 0 if self.conv_a2g is None else id_g * \
            self.sigmoid(self.conv_a2g(x))
        return x_l, x_g


class FourierUnit(nn.Module):

    def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',

                 spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
        # bn_layer not used
        super(FourierUnit, self).__init__()
        self.groups = groups

        self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
                                          out_channels=out_channels * 2,
                                          kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
        self.bn = torch.nn.BatchNorm2d(out_channels * 2)
        self.relu = torch.nn.ReLU(inplace=True)

        # squeeze and excitation block
        self.use_se = use_se
        if use_se:
            if se_kwargs is None:
                se_kwargs = {}
            self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)

        self.spatial_scale_factor = spatial_scale_factor
        self.spatial_scale_mode = spatial_scale_mode
        self.spectral_pos_encoding = spectral_pos_encoding
        self.ffc3d = ffc3d
        self.fft_norm = fft_norm

    def forward(self, x):
        batch = x.shape[0]

        if self.spatial_scale_factor is not None:
            orig_size = x.shape[-2:]
            x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)

        r_size = x.size()
        # (batch, c, h, w/2+1, 2)
        fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
        ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
        ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
        ffted = ffted.permute(0, 1, 4, 2, 3).contiguous()  # (batch, c, 2, h, w/2+1)
        ffted = ffted.view((batch, -1,) + ffted.size()[3:])

        if self.spectral_pos_encoding:
            height, width = ffted.shape[-2:]
            coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
            coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
            ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)

        if self.use_se:
            ffted = self.se(ffted)

        ffted = self.conv_layer(ffted)  # (batch, c*2, h, w/2+1)
        ffted = self.relu(self.bn(ffted))

        ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
            0, 1, 3, 4, 2).contiguous()  # (batch,c, t, h, w/2+1, 2)
        ffted = torch.complex(ffted[..., 0], ffted[..., 1])

        ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
        output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)

        if self.spatial_scale_factor is not None:
            output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)

        return output


class SpectralTransform(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
        # bn_layer not used
        super(SpectralTransform, self).__init__()
        self.enable_lfu = enable_lfu
        if stride == 2:
            self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        else:
            self.downsample = nn.Identity()

        self.stride = stride
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels, out_channels //
                      2, kernel_size=1, groups=groups, bias=False),
            nn.BatchNorm2d(out_channels // 2),
            nn.ReLU(inplace=True)
        )
        self.fu = FourierUnit(
            out_channels // 2, out_channels // 2, groups, **fu_kwargs)
        if self.enable_lfu:
            self.lfu = FourierUnit(
                out_channels // 2, out_channels // 2, groups)
        self.conv2 = torch.nn.Conv2d(
            out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)

    def forward(self, x):
        x = self.downsample(x)
        x = self.conv1(x)
        output = self.fu(x)

        if self.enable_lfu:
            n, c, h, w = x.shape
            split_no = 2
            split_s = h // split_no
            xs = torch.cat(torch.split(
                x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
            xs = torch.cat(torch.split(xs, split_s, dim=-1),
                           dim=1).contiguous()
            xs = self.lfu(xs)
            xs = xs.repeat(1, 1, split_no, split_no).contiguous()
        else:
            xs = 0

        output = self.conv2(x + output + xs)
        return output


class FFC(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size,

                 ratio_gin, ratio_gout, stride=1, padding=0,

                 dilation=1, groups=1, bias=False, enable_lfu=True,

                 padding_type='reflect', gated=False, **spectral_kwargs):
        super(FFC, self).__init__()

        assert stride == 1 or stride == 2, "Stride should be 1 or 2."
        self.stride = stride

        in_cg = int(in_channels * ratio_gin)
        in_cl = in_channels - in_cg
        out_cg = int(out_channels * ratio_gout)
        out_cl = out_channels - out_cg

        self.ratio_gin = ratio_gin
        self.ratio_gout = ratio_gout
        self.global_in_num = in_cg

        module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
        self.convl2l = module(in_cl, out_cl, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
        self.convl2g = module(in_cl, out_cg, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
        self.convg2l = module(in_cg, out_cl, kernel_size,
                              stride, padding, dilation, groups, bias, padding_mode=padding_type)
        module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
        self.convg2g = module(
            in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)

        self.gated = gated
        module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
        self.gate = module(in_channels, 2, 1)

    def forward(self, x):
        x_l, x_g = x if type(x) is tuple else (x, 0)
        out_xl, out_xg = 0, 0

        if self.gated:
            total_input_parts = [x_l]
            if torch.is_tensor(x_g):
                total_input_parts.append(x_g)
            total_input = torch.cat(total_input_parts, dim=1)

            gates = torch.sigmoid(self.gate(total_input))
            g2l_gate, l2g_gate = gates.chunk(2, dim=1)
        else:
            g2l_gate, l2g_gate = 1, 1

        if self.ratio_gout != 1:
            out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
        if self.ratio_gout != 0:
            out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)

        return out_xl, out_xg