Spaces:
Paused
Paused
File size: 5,854 Bytes
5c012bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import cv2
import glob
import numpy as np
from PIL import Image
from tqdm import tqdm
from scipy.io import savemat
import torch
from models import create_model
from options.inference_options import InferenceOptions
from util.preprocess import align_img
from util.load_mats import load_lm3d
from util.util import mkdirs, tensor2im, save_image
def get_data_path(root, keypoint_root):
filenames = list()
keypoint_filenames = list()
VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
extensions = VIDEO_EXTENSIONS
for ext in extensions:
filenames += glob.glob(f'{root}/**/*.{ext}', recursive=True)
filenames = sorted(filenames)
keypoint_filenames = sorted(glob.glob(f'{keypoint_root}/**/*.txt', recursive=True))
assert len(filenames) == len(keypoint_filenames)
return filenames, keypoint_filenames
class VideoPathDataset(torch.utils.data.Dataset):
def __init__(self, filenames, txt_filenames, bfm_folder):
self.filenames = filenames
self.txt_filenames = txt_filenames
self.lm3d_std = load_lm3d(bfm_folder)
def __len__(self):
return len(self.filenames)
def __getitem__(self, index):
filename = self.filenames[index]
txt_filename = self.txt_filenames[index]
frames = self.read_video(filename)
lm = np.loadtxt(txt_filename).astype(np.float32)
lm = lm.reshape([len(frames), -1, 2])
out_images, out_trans_params = list(), list()
for i in range(len(frames)):
out_img, _, out_trans_param \
= self.image_transform(frames[i], lm[i])
out_images.append(out_img[None])
out_trans_params.append(out_trans_param[None])
return {
'imgs': torch.cat(out_images, 0),
'trans_param':torch.cat(out_trans_params, 0),
'filename': filename
}
def read_video(self, filename):
frames = list()
cap = cv2.VideoCapture(filename)
while cap.isOpened():
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
else:
break
cap.release()
return frames
def image_transform(self, images, lm):
W,H = images.size
if np.mean(lm) == -1:
lm = (self.lm3d_std[:, :2]+1)/2.
lm = np.concatenate(
[lm[:, :1]*W, lm[:, 1:2]*H], 1
)
else:
lm[:, -1] = H - 1 - lm[:, -1]
trans_params, img, lm, _ = align_img(images, lm, self.lm3d_std)
img = torch.tensor(np.array(img)/255., dtype=torch.float32).permute(2, 0, 1)
lm = torch.tensor(lm)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)])
trans_params = torch.tensor(trans_params.astype(np.float32))
return img, lm, trans_params
def main(opt, model):
# import torch.multiprocessing
# torch.multiprocessing.set_sharing_strategy('file_system')
filenames, keypoint_filenames = get_data_path(opt.input_dir, opt.keypoint_dir)
dataset = VideoPathDataset(filenames, keypoint_filenames, opt.bfm_folder)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=1, # can noly set to one here!
shuffle=False,
drop_last=False,
num_workers=0,
)
batch_size = opt.inference_batch_size
for data in tqdm(dataloader):
num_batch = data['imgs'][0].shape[0] // batch_size + 1
pred_coeffs = list()
for index in range(num_batch):
data_input = {
'imgs': data['imgs'][0,index*batch_size:(index+1)*batch_size],
}
model.set_input(data_input)
model.test()
pred_coeff = {key:model.pred_coeffs_dict[key].cpu().numpy() for key in model.pred_coeffs_dict}
pred_coeff = np.concatenate([
pred_coeff['id'],
pred_coeff['exp'],
pred_coeff['tex'],
pred_coeff['angle'],
pred_coeff['gamma'],
pred_coeff['trans']], 1)
pred_coeffs.append(pred_coeff)
visuals = model.get_current_visuals() # get image results
if False: # debug
for name in visuals:
images = visuals[name]
for i in range(images.shape[0]):
image_numpy = tensor2im(images[i])
save_image(
image_numpy,
os.path.join(
opt.output_dir,
os.path.basename(data['filename'][0])+str(i).zfill(5)+'.jpg')
)
exit()
pred_coeffs = np.concatenate(pred_coeffs, 0)
pred_trans_params = data['trans_param'][0].cpu().numpy()
name = data['filename'][0].split('/')[-2:]
name[-1] = os.path.splitext(name[-1])[0] + '.mat'
os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True)
savemat(
os.path.join(opt.output_dir, name[-2], name[-1]),
{'coeff':pred_coeffs, 'transform_params':pred_trans_params}
)
if __name__ == '__main__':
opt = InferenceOptions().parse() # get test options
model = create_model(opt)
model.setup(opt)
model.device = 'cuda:0'
model.parallelize()
model.eval()
main(opt, model)
|