File size: 5,854 Bytes
5c012bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os
import cv2
import glob
import numpy as np
from PIL import Image
from tqdm import tqdm
from scipy.io import savemat

import torch 

from models import create_model
from options.inference_options import InferenceOptions
from util.preprocess import align_img
from util.load_mats import load_lm3d
from util.util import mkdirs, tensor2im, save_image


def get_data_path(root, keypoint_root):
    filenames = list()
    keypoint_filenames = list()

    VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
    VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
    extensions = VIDEO_EXTENSIONS

    for ext in extensions:
        filenames += glob.glob(f'{root}/**/*.{ext}', recursive=True)
    filenames = sorted(filenames)
    keypoint_filenames = sorted(glob.glob(f'{keypoint_root}/**/*.txt', recursive=True))
    assert len(filenames) == len(keypoint_filenames)

    return filenames, keypoint_filenames

class VideoPathDataset(torch.utils.data.Dataset):
    def __init__(self, filenames, txt_filenames, bfm_folder):
        self.filenames = filenames
        self.txt_filenames = txt_filenames
        self.lm3d_std = load_lm3d(bfm_folder) 

    def __len__(self):
        return len(self.filenames)

    def __getitem__(self, index):
        filename = self.filenames[index]
        txt_filename = self.txt_filenames[index]
        frames = self.read_video(filename)
        lm = np.loadtxt(txt_filename).astype(np.float32)
        lm = lm.reshape([len(frames), -1, 2]) 
        out_images, out_trans_params = list(), list()
        for i in range(len(frames)):
            out_img, _, out_trans_param \
                = self.image_transform(frames[i], lm[i])
            out_images.append(out_img[None])
            out_trans_params.append(out_trans_param[None])
        return {
            'imgs': torch.cat(out_images, 0),
            'trans_param':torch.cat(out_trans_params, 0),
            'filename': filename
        }
        
    def read_video(self, filename):
        frames = list()
        cap = cv2.VideoCapture(filename)
        while cap.isOpened():
            ret, frame = cap.read()
            if ret:
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                frame = Image.fromarray(frame)
                frames.append(frame)
            else:
                break
        cap.release()
        return frames

    def image_transform(self, images, lm):
        W,H = images.size
        if np.mean(lm) == -1:
            lm = (self.lm3d_std[:, :2]+1)/2.
            lm = np.concatenate(
                [lm[:, :1]*W, lm[:, 1:2]*H], 1
            )
        else:
            lm[:, -1] = H - 1 - lm[:, -1]

        trans_params, img, lm, _ = align_img(images, lm, self.lm3d_std)        
        img = torch.tensor(np.array(img)/255., dtype=torch.float32).permute(2, 0, 1)
        lm = torch.tensor(lm)
        trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)])
        trans_params = torch.tensor(trans_params.astype(np.float32))
        return img, lm, trans_params        

def main(opt, model):
    # import torch.multiprocessing
    # torch.multiprocessing.set_sharing_strategy('file_system')
    filenames, keypoint_filenames = get_data_path(opt.input_dir, opt.keypoint_dir)
    dataset = VideoPathDataset(filenames, keypoint_filenames, opt.bfm_folder)
    dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=1, # can noly set to one here!
        shuffle=False,
        drop_last=False,
        num_workers=0,
    )     
    batch_size = opt.inference_batch_size
    for data in tqdm(dataloader):
        num_batch = data['imgs'][0].shape[0] // batch_size + 1
        pred_coeffs = list()
        for index in range(num_batch):
            data_input = {                
                'imgs': data['imgs'][0,index*batch_size:(index+1)*batch_size],
            }
            model.set_input(data_input)  
            model.test()
            pred_coeff = {key:model.pred_coeffs_dict[key].cpu().numpy() for key in model.pred_coeffs_dict}
            pred_coeff = np.concatenate([
                pred_coeff['id'], 
                pred_coeff['exp'], 
                pred_coeff['tex'], 
                pred_coeff['angle'],
                pred_coeff['gamma'],
                pred_coeff['trans']], 1)
            pred_coeffs.append(pred_coeff) 
            visuals = model.get_current_visuals()  # get image results
            if False: # debug
                for name in visuals:
                    images = visuals[name]
                    for i in range(images.shape[0]):
                        image_numpy = tensor2im(images[i])
                        save_image(
                            image_numpy, 
                            os.path.join(
                                opt.output_dir,
                                os.path.basename(data['filename'][0])+str(i).zfill(5)+'.jpg')
                            )
                exit()

        pred_coeffs = np.concatenate(pred_coeffs, 0)
        pred_trans_params = data['trans_param'][0].cpu().numpy()
        name = data['filename'][0].split('/')[-2:]
        name[-1] = os.path.splitext(name[-1])[0] + '.mat'
        os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True)
        savemat(
            os.path.join(opt.output_dir, name[-2], name[-1]), 
            {'coeff':pred_coeffs, 'transform_params':pred_trans_params}
        )

if __name__ == '__main__':
    opt = InferenceOptions().parse()  # get test options
    model = create_model(opt)
    model.setup(opt)
    model.device = 'cuda:0'
    model.parallelize()
    model.eval()

    main(opt, model)