File size: 7,662 Bytes
5c012bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""This script contains base options for Deep3DFaceRecon_pytorch

"""

import argparse
import os
from util import util
import numpy as np
import torch
import face3d.models as models
import face3d.data as data


class BaseOptions():
    """This class defines options used during both training and test time.



    It also implements several helper functions such as parsing, printing, and saving the options.

    It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.

    """

    def __init__(self, cmd_line=None):
        """Reset the class; indicates the class hasn't been initialized"""
        self.initialized = False
        self.cmd_line = None
        if cmd_line is not None:
            self.cmd_line = cmd_line.split()

    def initialize(self, parser):
        """Define the common options that are used in both training and test."""
        # basic parameters
        parser.add_argument('--name', type=str, default='face_recon', help='name of the experiment. It decides where to store samples and models')
        parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0  0,1,2, 0,2. use -1 for CPU')
        parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
        parser.add_argument('--vis_batch_nums', type=float, default=1, help='batch nums of images for visulization')
        parser.add_argument('--eval_batch_nums', type=float, default=float('inf'), help='batch nums of images for evaluation')
        parser.add_argument('--use_ddp', type=util.str2bool, nargs='?', const=True, default=True, help='whether use distributed data parallel')
        parser.add_argument('--ddp_port', type=str, default='12355', help='ddp port')
        parser.add_argument('--display_per_batch', type=util.str2bool, nargs='?', const=True, default=True, help='whether use batch to show losses')
        parser.add_argument('--add_image', type=util.str2bool, nargs='?', const=True, default=True, help='whether add image to tensorboard')
        parser.add_argument('--world_size', type=int, default=1, help='batch nums of images for evaluation')

        # model parameters
        parser.add_argument('--model', type=str, default='facerecon', help='chooses which model to use.')

        # additional parameters
        parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
        parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
        parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')

        self.initialized = True
        return parser

    def gather_options(self):
        """Initialize our parser with basic options(only once).

        Add additional model-specific and dataset-specific options.

        These options are defined in the <modify_commandline_options> function

        in model and dataset classes.

        """
        if not self.initialized:  # check if it has been initialized
            parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
            parser = self.initialize(parser)

        # get the basic options
        if self.cmd_line is None:
            opt, _ = parser.parse_known_args()
        else:
            opt, _ = parser.parse_known_args(self.cmd_line)

        # set cuda visible devices
        os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_ids

        # modify model-related parser options
        model_name = opt.model
        model_option_setter = models.get_option_setter(model_name)
        parser = model_option_setter(parser, self.isTrain)
        if self.cmd_line is None:
            opt, _ = parser.parse_known_args()  # parse again with new defaults
        else:
            opt, _ = parser.parse_known_args(self.cmd_line)  # parse again with new defaults

        # modify dataset-related parser options
        if opt.dataset_mode:
            dataset_name = opt.dataset_mode
            dataset_option_setter = data.get_option_setter(dataset_name)
            parser = dataset_option_setter(parser, self.isTrain)

        # save and return the parser
        self.parser = parser
        if self.cmd_line is None:
            return parser.parse_args()
        else:
            return parser.parse_args(self.cmd_line)

    def print_options(self, opt):
        """Print and save options



        It will print both current options and default values(if different).

        It will save options into a text file / [checkpoints_dir] / opt.txt

        """
        message = ''
        message += '----------------- Options ---------------\n'
        for k, v in sorted(vars(opt).items()):
            comment = ''
            default = self.parser.get_default(k)
            if v != default:
                comment = '\t[default: %s]' % str(default)
            message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
        message += '----------------- End -------------------'
        print(message)

        # save to the disk
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        util.mkdirs(expr_dir)
        file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
        try:
            with open(file_name, 'wt') as opt_file:
                opt_file.write(message)
                opt_file.write('\n')
        except PermissionError as error:
            print("permission error {}".format(error))
            pass

    def parse(self):
        """Parse our options, create checkpoints directory suffix, and set up gpu device."""
        opt = self.gather_options()
        opt.isTrain = self.isTrain   # train or test

        # process opt.suffix
        if opt.suffix:
            suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
            opt.name = opt.name + suffix


        # set gpu ids
        str_ids = opt.gpu_ids.split(',')
        gpu_ids = []
        for str_id in str_ids:
            id = int(str_id)
            if id >= 0:
                gpu_ids.append(id)
        opt.world_size = len(gpu_ids)
        # if len(opt.gpu_ids) > 0:
        #     torch.cuda.set_device(gpu_ids[0])
        if opt.world_size == 1:
            opt.use_ddp = False

        if opt.phase != 'test':
            # set continue_train automatically
            if opt.pretrained_name is None:
                model_dir = os.path.join(opt.checkpoints_dir, opt.name)
            else:
                model_dir = os.path.join(opt.checkpoints_dir, opt.pretrained_name)
            if os.path.isdir(model_dir):
                model_pths = [i for i in os.listdir(model_dir) if i.endswith('pth')]
                if os.path.isdir(model_dir) and len(model_pths) != 0:
                    opt.continue_train= True
        
            # update the latest epoch count
            if opt.continue_train:
                if opt.epoch == 'latest':
                    epoch_counts = [int(i.split('.')[0].split('_')[-1]) for i in model_pths if 'latest' not in i]
                    if len(epoch_counts) != 0:
                        opt.epoch_count = max(epoch_counts) + 1
                else:
                    opt.epoch_count = int(opt.epoch) + 1
                    

        self.print_options(opt)
        self.opt = opt
        return self.opt