File size: 7,718 Bytes
5c012bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""

This script contains the image preprocessing code for Deep3DFaceRecon_pytorch

"""

import numpy as np
from scipy.io import loadmat
from PIL import Image
import cv2
import os
from skimage import transform as trans
import torch
import warnings
warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) 
warnings.filterwarnings("ignore", category=FutureWarning) 


# calculating least square problem for image alignment
def POS(xp, x):
    npts = xp.shape[1]

    A = np.zeros([2*npts, 8])

    A[0:2*npts-1:2, 0:3] = x.transpose()
    A[0:2*npts-1:2, 3] = 1

    A[1:2*npts:2, 4:7] = x.transpose()
    A[1:2*npts:2, 7] = 1

    b = np.reshape(xp.transpose(), [2*npts, 1])

    k, _, _, _ = np.linalg.lstsq(A, b)

    R1 = k[0:3]
    R2 = k[4:7]
    sTx = k[3]
    sTy = k[7]
    s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2
    t = np.stack([sTx, sTy], axis=0)

    return t, s

# bounding box for 68 landmark detection
def BBRegression(points, params):

    w1 = params['W1']
    b1 = params['B1']
    w2 = params['W2']
    b2 = params['B2']
    data = points.copy()
    data = data.reshape([5, 2])
    data_mean = np.mean(data, axis=0)
    x_mean = data_mean[0]
    y_mean = data_mean[1]
    data[:, 0] = data[:, 0] - x_mean
    data[:, 1] = data[:, 1] - y_mean

    rms = np.sqrt(np.sum(data ** 2)/5)
    data = data / rms
    data = data.reshape([1, 10])
    data = np.transpose(data)
    inputs = np.matmul(w1, data) + b1
    inputs = 2 / (1 + np.exp(-2 * inputs)) - 1
    inputs = np.matmul(w2, inputs) + b2
    inputs = np.transpose(inputs)
    x = inputs[:, 0] * rms + x_mean
    y = inputs[:, 1] * rms + y_mean
    w = 224/inputs[:, 2] * rms
    rects = [x, y, w, w]
    return np.array(rects).reshape([4])

# utils for landmark detection
def img_padding(img, box):
    success = True
    bbox = box.copy()
    res = np.zeros([2*img.shape[0], 2*img.shape[1], 3])
    res[img.shape[0] // 2: img.shape[0] + img.shape[0] //
        2, img.shape[1] // 2: img.shape[1] + img.shape[1]//2] = img

    bbox[0] = bbox[0] + img.shape[1] // 2
    bbox[1] = bbox[1] + img.shape[0] // 2
    if bbox[0] < 0 or bbox[1] < 0:
        success = False
    return res, bbox, success

# utils for landmark detection
def crop(img, bbox):
    padded_img, padded_bbox, flag = img_padding(img, bbox)
    if flag:
        crop_img = padded_img[padded_bbox[1]: padded_bbox[1] +
                            padded_bbox[3], padded_bbox[0]: padded_bbox[0] + padded_bbox[2]]
        crop_img = cv2.resize(crop_img.astype(np.uint8),
                            (224, 224), interpolation=cv2.INTER_CUBIC)
        scale = 224 / padded_bbox[3]
        return crop_img, scale
    else:
        return padded_img, 0

# utils for landmark detection
def scale_trans(img, lm, t, s):
    imgw = img.shape[1]
    imgh = img.shape[0]
    M_s = np.array([[1, 0, -t[0] + imgw//2 + 0.5], [0, 1, -imgh//2 + t[1]]],
                   dtype=np.float32)
    img = cv2.warpAffine(img, M_s, (imgw, imgh))
    w = int(imgw / s * 100)
    h = int(imgh / s * 100)
    img = cv2.resize(img, (w, h))
    lm = np.stack([lm[:, 0] - t[0] + imgw // 2, lm[:, 1] -
                   t[1] + imgh // 2], axis=1) / s * 100

    left = w//2 - 112
    up = h//2 - 112
    bbox = [left, up, 224, 224]
    cropped_img, scale2 = crop(img, bbox)
    assert(scale2!=0)
    t1 = np.array([bbox[0], bbox[1]])

    # back to raw img s * crop + s * t1 + t2
    t1 = np.array([w//2 - 112, h//2 - 112])
    scale = s / 100
    t2 = np.array([t[0] - imgw/2, t[1] - imgh / 2])
    inv = (scale/scale2, scale * t1 + t2.reshape([2]))
    return cropped_img, inv

# utils for landmark detection
def align_for_lm(img, five_points):
    five_points = np.array(five_points).reshape([1, 10])
    params = loadmat('util/BBRegressorParam_r.mat')
    bbox = BBRegression(five_points, params)
    assert(bbox[2] != 0)
    bbox = np.round(bbox).astype(np.int32)
    crop_img, scale = crop(img, bbox)
    return crop_img, scale, bbox


# resize and crop images for face reconstruction
def resize_n_crop_img(img, lm, t, s, target_size=224., mask=None):
    w0, h0 = img.size
    w = (w0*s).astype(np.int32)
    h = (h0*s).astype(np.int32)
    left = (w/2 - target_size/2 + float((t[0] - w0/2)*s)).astype(np.int32)
    right = left + target_size
    up = (h/2 - target_size/2 + float((h0/2 - t[1])*s)).astype(np.int32)
    below = up + target_size

    img = img.resize((w, h), resample=Image.BICUBIC)
    img = img.crop((left, up, right, below))

    if mask is not None:
        mask = mask.resize((w, h), resample=Image.BICUBIC)
        mask = mask.crop((left, up, right, below))

    lm = np.stack([lm[:, 0] - t[0] + w0/2, lm[:, 1] -
                  t[1] + h0/2], axis=1)*s
    lm = lm - np.reshape(
            np.array([(w/2 - target_size/2), (h/2-target_size/2)]), [1, 2])

    return img, lm, mask

# utils for face reconstruction
def extract_5p(lm):
    lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1
    lm5p = np.stack([lm[lm_idx[0], :], np.mean(lm[lm_idx[[1, 2]], :], 0), np.mean(
        lm[lm_idx[[3, 4]], :], 0), lm[lm_idx[5], :], lm[lm_idx[6], :]], axis=0)
    lm5p = lm5p[[1, 2, 0, 3, 4], :]
    return lm5p

# utils for face reconstruction
def align_img(img, lm, lm3D, mask=None, target_size=224., rescale_factor=102.):
    """

    Return:

        transparams        --numpy.array  (raw_W, raw_H, scale, tx, ty)

        img_new            --PIL.Image  (target_size, target_size, 3)

        lm_new             --numpy.array  (68, 2), y direction is opposite to v direction

        mask_new           --PIL.Image  (target_size, target_size)

    

    Parameters:

        img                --PIL.Image  (raw_H, raw_W, 3)

        lm                 --numpy.array  (68, 2), y direction is opposite to v direction

        lm3D               --numpy.array  (5, 3)

        mask               --PIL.Image  (raw_H, raw_W, 3)

    """

    w0, h0 = img.size
    if lm.shape[0] != 5:
        lm5p = extract_5p(lm)
    else:
        lm5p = lm

    # calculate translation and scale factors using 5 facial landmarks and standard landmarks of a 3D face
    t, s = POS(lm5p.transpose(), lm3D.transpose())
    s = rescale_factor/s

    # processing the image
    img_new, lm_new, mask_new = resize_n_crop_img(img, lm, t, s, target_size=target_size, mask=mask)
    trans_params = np.array([w0, h0, s, t[0], t[1]])

    return trans_params, img_new, lm_new, mask_new

# utils for face recognition model
def estimate_norm(lm_68p, H):
    # from https://github.com/deepinsight/insightface/blob/c61d3cd208a603dfa4a338bd743b320ce3e94730/recognition/common/face_align.py#L68
    """

    Return:

        trans_m            --numpy.array  (2, 3)

    Parameters:

        lm                 --numpy.array  (68, 2), y direction is opposite to v direction

        H                  --int/float , image height

    """
    lm = extract_5p(lm_68p)
    lm[:, -1] = H - 1 - lm[:, -1]
    tform = trans.SimilarityTransform()
    src = np.array(
    [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
     [41.5493, 92.3655], [70.7299, 92.2041]],
    dtype=np.float32)
    tform.estimate(lm, src)
    M = tform.params
    if np.linalg.det(M) == 0:
        M = np.eye(3)

    return M[0:2, :]

def estimate_norm_torch(lm_68p, H):
    lm_68p_ = lm_68p.detach().cpu().numpy()
    M = []
    for i in range(lm_68p_.shape[0]):
        M.append(estimate_norm(lm_68p_[i], H))
    M = torch.tensor(np.array(M), dtype=torch.float32).to(lm_68p.device)
    return M