aiavatartest / app.py
Spanicin's picture
Update app.py
20cd47a verified
raw
history blame
16.8 kB
from flask import Flask, request, jsonify
import torch
import shutil
import os
import sys
from argparse import ArgumentParser
from time import strftime
from argparse import Namespace
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
# from src.utils.init_path import init_path
import tempfile
from openai import OpenAI
import threading
import elevenlabs
from elevenlabs import set_api_key, generate, play, clone
from flask_cors import CORS, cross_origin
# from flask_swagger_ui import get_swaggerui_blueprint
import uuid
import time
start_time = time.time()
class AnimationConfig:
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path):
self.driven_audio = driven_audio_path
self.source_image = source_image_path
self.ref_eyeblink = ref_pose_video_path
self.ref_pose = ref_pose_video_path
self.checkpoint_dir = './checkpoints'
self.result_dir = result_folder
self.pose_style = pose_style
self.batch_size = 2
self.expression_scale = expression_scale
self.input_yaw = None
self.input_pitch = None
self.input_roll = None
self.enhancer = enhancer
self.background_enhancer = None
self.cpu = False
self.face3dvis = False
self.still = still
self.preprocess = preprocess
self.verbose = False
self.old_version = False
self.net_recon = 'resnet50'
self.init_path = None
self.use_last_fc = False
self.bfm_folder = './checkpoints/BFM_Fitting/'
self.bfm_model = 'BFM_model_front.mat'
self.focal = 1015.
self.center = 112.
self.camera_d = 10.
self.z_near = 5.
self.z_far = 15.
self.device = 'cpu'
app = Flask(__name__)
CORS(app)
TEMP_DIR = None
app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
def main(args):
pic_path = args.source_image
audio_path = args.driven_audio
save_dir = args.result_dir
pose_style = args.pose_style
device = args.device
batch_size = args.batch_size
input_yaw_list = args.input_yaw
input_pitch_list = args.input_pitch
input_roll_list = args.input_roll
ref_eyeblink = args.ref_eyeblink
ref_pose = args.ref_pose
preprocess = args.preprocess
dir_path = os.path.dirname(os.path.realpath(__file__))
current_root_path = dir_path
print('current_root_path ',current_root_path)
# sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting/BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
if preprocess == 'full':
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
else:
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
# preprocess_model = CropAndExtract(sadtalker_paths, device)
#init model
print(path_of_net_recon_model)
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
# audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, device)
# animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
facerender_yaml_path, device)
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
# first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
# source_image_flag=True, pic_size=args.size)
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
print('first_coeff_path ',first_coeff_path)
print('crop_pic_path ',crop_pic_path)
if first_coeff_path is None:
print("Can't get the coeffs of the input")
return
if ref_eyeblink is not None:
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
# ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
else:
ref_eyeblink_coeff_path=None
print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)
if ref_pose is not None:
if ref_pose == ref_eyeblink:
ref_pose_coeff_path = ref_eyeblink_coeff_path
else:
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
os.makedirs(ref_pose_frame_dir, exist_ok=True)
# ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir)
else:
ref_pose_coeff_path=None
print('ref_eyeblink_coeff_path',ref_pose_coeff_path)
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
if args.face3dvis:
from src.face3d.visualize import gen_composed_video
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
# data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
# batch_size, input_yaw_list, input_pitch_list, input_roll_list,
# expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
batch_size, input_yaw_list, input_pitch_list, input_roll_list,
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
# result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
# enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)
result, base64_video,temp_file_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
print('The generated video is named:')
app.config['temp_response'] = base64_video
app.config['final_video_path'] = temp_file_path
return base64_video, temp_file_path
# shutil.move(result, save_dir+'.mp4')
if not args.verbose:
shutil.rmtree(save_dir)
def create_temp_dir():
return tempfile.TemporaryDirectory()
def save_uploaded_file(file, filename,TEMP_DIR):
unique_filename = str(uuid.uuid4()) + "_" + filename
file_path = os.path.join(TEMP_DIR.name, unique_filename)
file.save(file_path)
return file_path
client = OpenAI(api_key="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")
def translate_text(text_prompt, target_language):
response = client.chat.completions.create(
model="gpt-4-0125-preview",
messages=[{"role": "system", "content": "You are a helpful language translator assistant."},
{"role": "user", "content": f"Translate completely without hallucination, end to end, and give the following text to {target_language} language and the text is: {text_prompt}"},
],
max_tokens = len(text_prompt) + 200 # Use the length of the input text
# temperature=0.3,
# stop=["Translate:", "Text:"]
)
return response
@app.route("/run", methods=['POST'])
async def generate_video():
global TEMP_DIR
TEMP_DIR = create_temp_dir()
if request.method == 'POST':
source_image = request.files['source_image']
text_prompt = request.form['text_prompt']
print('Input text prompt: ',text_prompt)
voice_cloning = request.form.get('voice_cloning', 'no')
target_language = request.form.get('target_language', 'original_text')
print('target_language',target_language)
pose_style = int(request.form.get('pose_style', 1))
expression_scale = int(request.form.get('expression_scale', 1))
enhancer = request.form.get('enhancer', None)
voice_gender = request.form.get('voice_gender', 'male')
still_str = request.form.get('still', 'False')
still = still_str.lower() == 'true'
print('still', still)
preprocess = request.form.get('preprocess', 'crop')
print('preprocess selected: ',preprocess)
ref_pose_video = request.files.get('ref_pose', None)
if target_language != 'original_text':
response = translate_text(text_prompt, target_language)
# response = await translate_text_async(text_prompt, target_language)
text_prompt = response.choices[0].message.content.strip()
app.config['text_prompt'] = text_prompt
print('Final text prompt: ',text_prompt)
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
print(source_image_path)
# driven_audio_path = await voice_cloning_async(voice_cloning, voice_gender, text_prompt, user_voice)
if voice_cloning == 'no':
if voice_gender == 'male':
voice = 'onyx'
else:
voice = 'nova'
print('Entering Audio creation using whisper')
response = client.audio.speech.create(model="tts-1-hd",
voice=voice,
input = text_prompt)
print('Audio created using whisper')
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
driven_audio_path = temp_file.name
response.write_to_file(driven_audio_path)
print('Audio file saved')
elif voice_cloning == 'yes':
user_voice = request.files['user_voice']
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="user_voice_",dir=TEMP_DIR.name, delete=False) as temp_file:
user_voice_path = temp_file.name
user_voice.save(user_voice_path)
print('user_voice_path',user_voice_path)
set_api_key("87792fce164425fbe1204e9fd1fe25cd")
voice = clone(name = "User Cloned Voice",
files = [user_voice_path] )
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
# elevenlabs.save(audio, driven_audio_path)
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
result_folder = os.path.join(save_dir, "results")
os.makedirs(result_folder, exist_ok=True)
ref_pose_video_path = None
if ref_pose_video:
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
ref_pose_video_path = temp_file.name
ref_pose_video.save(ref_pose_video_path)
print('ref_pose_video_path',ref_pose_video_path)
# Example of using the class with some hypothetical paths
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale, enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path)
if torch.cuda.is_available() and not args.cpu:
args.device = "cuda"
else:
args.device = "cpu"
generation_thread = threading.Thread(target=main, args=(args,))
app.config['generation_thread'] = generation_thread
generation_thread.start()
response_data = {"message": "Video generation started",
"process_id": generation_thread.ident}
return jsonify(response_data)
# base64_video = main(args)
# return jsonify({"base64_video": base64_video})
#else:
# return 'Unsupported HTTP method', 405
@app.route("/status", methods=["GET"])
def check_generation_status():
global TEMP_DIR
response = {"base64_video": "","text_prompt":"", "status": ""}
process_id = request.args.get('process_id', None)
# process_id is required to check the status for that specific process
if process_id:
generation_thread = app.config.get('generation_thread')
if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive():
return jsonify({"status": "in_progress"}), 200
elif app.config.get('temp_response'):
# app.config['temp_response']['status'] = 'completed'
final_response = app.config['temp_response']
response["base64_video"] = final_response
response["text_prompt"] = app.config.get('text_prompt')
response["status"] = "completed"
final_video_path = app.config['final_video_path']
print('final_video_path',final_video_path)
if final_video_path and os.path.exists(final_video_path):
os.remove(final_video_path)
print("Deleted video file:", final_video_path)
TEMP_DIR.cleanup()
# print("Temporary Directory:", TEMP_DIR.name)
# if TEMP_DIR:
# print("Contents of Temporary Directory:")
# for filename in os.listdir(TEMP_DIR.name):
# print(filename)
# else:
# print("Temporary Directory is None or already cleaned up.")
end_time = time.time()
total_time = round(end_time - start_time, 2)
print("Total time taken for execution:", total_time, " seconds")
return jsonify(response)
return jsonify({"error":"No process id provided"})
@app.route("/health", methods=["GET"])
def health_status():
response = {"online": "true"}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True)