aiavatartest / src /utils /face_enhancer.py
Spanicin's picture
Upload 141 files
04c1e71 verified
raw
history blame
3.39 kB
import os
import torch
from gfpgan import GFPGANer
from tqdm import tqdm
from src.utils.videoio import load_video_to_cv2
import cv2
def enhancer(images, method='gfpgan', bg_upsampler='realesrgan'):
print('face enhancer....')
if os.path.isfile(images): # handle video to images
images = load_video_to_cv2(images)
# ------------------------ set up GFPGAN restorer ------------------------
if method == 'gfpgan':
arch = 'clean'
channel_multiplier = 2
model_name = 'GFPGANv1.4'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
elif method == 'RestoreFormer':
arch = 'RestoreFormer'
channel_multiplier = 2
model_name = 'RestoreFormer'
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
elif method == 'codeformer': # TODO:
arch = 'CodeFormer'
channel_multiplier = 2
model_name = 'CodeFormer'
url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
else:
raise ValueError(f'Wrong model version {method}.')
# ------------------------ set up background upsampler ------------------------
if bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU
import warnings
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.')
bg_upsampler = None
else:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
bg_upsampler = RealESRGANer(
scale=2,
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
model=model,
tile=400,
tile_pad=10,
pre_pad=0,
half=True) # need to set False in CPU mode
else:
bg_upsampler = None
# determine model paths
model_path = os.path.join('gfpgan/weights', model_name + '.pth')
if not os.path.isfile(model_path):
model_path = os.path.join('checkpoints', model_name + '.pth')
if not os.path.isfile(model_path):
# download pre-trained models from url
model_path = url
restorer = GFPGANer(
model_path=model_path,
upscale=2,
arch=arch,
channel_multiplier=channel_multiplier,
bg_upsampler=bg_upsampler)
# ------------------------ restore ------------------------
restored_img = []
for idx in tqdm(range(len(images)), 'Face Enhancer:'):
img = cv2.cvtColor(images[idx], cv2.COLOR_RGB2BGR)
# restore faces and background if necessary
cropped_faces, restored_faces, r_img = restorer.enhance(
img,
has_aligned=False,
only_center_face=False,
paste_back=True)
r_img = cv2.cvtColor(r_img, cv2.COLOR_BGR2RGB)
restored_img += [r_img]
return restored_img