Spaces:
Paused
Paused
from flask import Flask, request, jsonify | |
import torch | |
import shutil | |
import os | |
import sys | |
from argparse import ArgumentParser | |
from time import strftime | |
from argparse import Namespace | |
from src.utils.preprocess import CropAndExtract | |
from src.test_audio2coeff import Audio2Coeff | |
from src.facerender.animate import AnimateFromCoeff | |
from src.generate_batch import get_data | |
from src.generate_facerender_batch import get_facerender_data | |
# from src.utils.init_path import init_path | |
import tempfile | |
from openai import OpenAI | |
import threading | |
import elevenlabs | |
from elevenlabs import set_api_key, generate, play, clone | |
from flask_cors import CORS, cross_origin | |
# from flask_swagger_ui import get_swaggerui_blueprint | |
import uuid | |
import time | |
from PIL import Image | |
import moviepy.editor as mp | |
from videoretalking import inference_function | |
start_time = time.time() | |
class AnimationConfig: | |
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path): | |
self.driven_audio = driven_audio_path | |
self.source_image = source_image_path | |
self.ref_eyeblink = None | |
self.ref_pose = ref_pose_video_path | |
self.checkpoint_dir = './checkpoints' | |
self.result_dir = result_folder | |
self.pose_style = pose_style | |
self.batch_size = 2 | |
self.expression_scale = expression_scale | |
self.input_yaw = None | |
self.input_pitch = None | |
self.input_roll = None | |
self.enhancer = enhancer | |
self.background_enhancer = None | |
self.cpu = False | |
self.face3dvis = False | |
self.still = still | |
self.preprocess = preprocess | |
self.verbose = False | |
self.old_version = False | |
self.net_recon = 'resnet50' | |
self.init_path = None | |
self.use_last_fc = False | |
self.bfm_folder = './checkpoints/BFM_Fitting/' | |
self.bfm_model = 'BFM_model_front.mat' | |
self.focal = 1015. | |
self.center = 112. | |
self.camera_d = 10. | |
self.z_near = 5. | |
self.z_far = 15. | |
self.device = 'cpu' | |
app = Flask(__name__) | |
CORS(app) | |
TEMP_DIR = None | |
app.config['temp_response'] = None | |
app.config['generation_thread'] = None | |
app.config['text_prompt'] = None | |
app.config['final_video_path'] = None | |
app.config['final_video_duration'] = None | |
def main(args): | |
pic_path = args.source_image | |
audio_path = args.driven_audio | |
save_dir = args.result_dir | |
pose_style = args.pose_style | |
device = args.device | |
batch_size = args.batch_size | |
input_yaw_list = args.input_yaw | |
input_pitch_list = args.input_pitch | |
input_roll_list = args.input_roll | |
ref_eyeblink = args.ref_eyeblink | |
ref_pose = args.ref_pose | |
preprocess = args.preprocess | |
dir_path = os.path.dirname(os.path.realpath(__file__)) | |
current_root_path = dir_path | |
print('current_root_path ',current_root_path) | |
# sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess) | |
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat') | |
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth') | |
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting') | |
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth') | |
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth') | |
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') | |
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth') | |
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') | |
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar') | |
if preprocess == 'full': | |
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') | |
else: | |
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') | |
face_path = "/home/user/app/images/download_1.mp4" # Replace with the path to your face image or video | |
audio_path = "/home/user/app/images/audio_1.mp3" # Replace with the path to your audio file | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') # You can change suffix based on your file type | |
temp_file_path = temp_file.name | |
output_path = temp_file_path | |
# Call the function | |
inference_function.video_lipsync_correctness( | |
face=face_path, | |
audio_path=audio_path, | |
face3d_net_path = path_of_net_recon_model, | |
outfile=output_path, | |
tmp_dir="temp", | |
crop=[0, -1, 0, -1], | |
re_preprocess=True, # Set to True if you want to reprocess; False otherwise | |
exp_img="neutral", # Can be 'smile', 'neutral', or path to an expression image | |
one_shot=False, | |
up_face="original", # Options: 'original', 'sad', 'angry', 'surprise' | |
LNet_batch_size=16, | |
without_rl1=False | |
) | |
# # preprocess_model = CropAndExtract(sadtalker_paths, device) | |
# #init model | |
# print(path_of_net_recon_model) | |
# preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) | |
# # audio_to_coeff = Audio2Coeff(sadtalker_paths, device) | |
# audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
# audio2exp_checkpoint, audio2exp_yaml_path, | |
# wav2lip_checkpoint, device) | |
# # animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device) | |
# animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
# facerender_yaml_path, device) | |
# first_frame_dir = os.path.join(save_dir, 'first_frame_dir') | |
# os.makedirs(first_frame_dir, exist_ok=True) | |
# # first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\ | |
# # source_image_flag=True, pic_size=args.size) | |
# first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True) | |
# print('first_coeff_path ',first_coeff_path) | |
# print('crop_pic_path ',crop_pic_path) | |
# if first_coeff_path is None: | |
# print("Can't get the coeffs of the input") | |
# return | |
# if ref_eyeblink is not None: | |
# ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0] | |
# ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname) | |
# os.makedirs(ref_eyeblink_frame_dir, exist_ok=True) | |
# # ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False) | |
# ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir) | |
# else: | |
# ref_eyeblink_coeff_path=None | |
# print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path) | |
# if ref_pose is not None: | |
# if ref_pose == ref_eyeblink: | |
# ref_pose_coeff_path = ref_eyeblink_coeff_path | |
# else: | |
# ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0] | |
# ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname) | |
# os.makedirs(ref_pose_frame_dir, exist_ok=True) | |
# # ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False) | |
# ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir) | |
# else: | |
# ref_pose_coeff_path=None | |
# print('ref_eyeblink_coeff_path',ref_pose_coeff_path) | |
# batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still) | |
# coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path) | |
# if args.face3dvis: | |
# from src.face3d.visualize import gen_composed_video | |
# gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4')) | |
# # data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, | |
# # batch_size, input_yaw_list, input_pitch_list, input_roll_list, | |
# # expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size) | |
# data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, | |
# batch_size, input_yaw_list, input_pitch_list, input_roll_list, | |
# expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) | |
# # result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \ | |
# # enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size) | |
# result, base64_video,temp_file_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \ | |
# enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) | |
# print('The video is generated') | |
# video_clip = mp.VideoFileClip(temp_file_path) | |
# duration = video_clip.duration | |
# app.config['temp_response'] = base64_video | |
# app.config['final_video_path'] = temp_file_path | |
# app.config['final_video_duration'] = duration | |
# return base64_video, temp_file_path, duration | |
# shutil.move(result, save_dir+'.mp4') | |
if not args.verbose: | |
shutil.rmtree(save_dir) | |
def create_temp_dir(): | |
return tempfile.TemporaryDirectory() | |
def save_uploaded_file(file, filename,TEMP_DIR): | |
unique_filename = str(uuid.uuid4()) + "_" + filename | |
file_path = os.path.join(TEMP_DIR.name, unique_filename) | |
file.save(file_path) | |
return file_path | |
client = OpenAI(api_key="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") | |
def translate_text(text_prompt, target_language): | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[{"role": "system", "content": "You are a helpful language translator assistant."}, | |
{"role": "user", "content": f"Translate completely without hallucination, end to end and the ouput should just be the translation of the text prompt and nothing else, and give the following text to {target_language} language and the text is: {text_prompt}"}, | |
], | |
max_tokens = len(text_prompt) + 200 # Use the length of the input text | |
# temperature=0.3, | |
# stop=["Translate:", "Text:"] | |
) | |
return response | |
def chat_avatar(text_prompt): | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[{"role": "system", "content": "You are an interactive, conversational and helpful chatbot. Your role is to assist users by providing clear, engaging, and relevant only one liner responses responses based on their queries. Regardless of the language used by the user, you should always respond in English."}, | |
{"role": "user", "content": f"Hi! I need help with something. Can you assist me with the following: {text_prompt}"}, | |
], | |
max_tokens = len(text_prompt) + 300 # Use the length of the input text | |
# temperature=0.3, | |
# stop=["Translate:", "Text:"] | |
) | |
return response | |
def generate_video(): | |
global TEMP_DIR | |
TEMP_DIR = create_temp_dir() | |
print('request:',request.method) | |
try: | |
if request.method == 'POST': | |
# source_image = request.files['source_image'] | |
image_path = '/home/user/app/images/vibhu2.jpg' | |
source_image = Image.open(image_path) | |
text_prompt = request.form['text_prompt'] | |
print('Input text prompt: ',text_prompt) | |
text_prompt = text_prompt.strip() | |
if not text_prompt: | |
return jsonify({'error': 'Input text prompt cannot be blank'}), 400 | |
voice_cloning = request.form.get('voice_cloning', 'no') | |
target_language = request.form.get('target_language', 'original_text') | |
print('target_language',target_language) | |
pose_style = int(request.form.get('pose_style', 1)) | |
expression_scale = float(request.form.get('expression_scale', 1)) | |
enhancer = request.form.get('enhancer', None) | |
voice_gender = request.form.get('voice_gender', 'male') | |
still_str = request.form.get('still', 'False') | |
still = still_str.lower() == 'false' | |
print('still', still) | |
preprocess = request.form.get('preprocess', 'crop') | |
print('preprocess selected: ',preprocess) | |
ref_pose_video = request.files.get('ref_pose', None) | |
# if target_language != 'original_text': | |
# response = translate_text(text_prompt, target_language) | |
# # response = await translate_text_async(text_prompt, target_language) | |
# text_prompt = response.choices[0].message.content.strip() | |
response = chat_avatar(text_prompt) | |
text_prompt = response.choices[0].message.content.strip() | |
app.config['text_prompt'] = text_prompt | |
print('Final text prompt: ',text_prompt) | |
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR) | |
print(source_image_path) | |
# driven_audio_path = await voice_cloning_async(voice_cloning, voice_gender, text_prompt, user_voice) | |
if voice_cloning == 'no': | |
if voice_gender == 'male': | |
voice = 'echo' | |
print('Entering Audio creation using elevenlabs') | |
set_api_key("92e149985ea2732b4359c74346c3daee") | |
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
print('Audio file saved using elevenlabs') | |
else: | |
voice = 'nova' | |
print('Entering Audio creation using whisper') | |
response = client.audio.speech.create(model="tts-1-hd", | |
voice=voice, | |
input = text_prompt) | |
print('Audio created using whisper') | |
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
driven_audio_path = temp_file.name | |
response.write_to_file(driven_audio_path) | |
print('Audio file saved using whisper') | |
elif voice_cloning == 'yes': | |
# user_voice = request.files['user_voice'] | |
user_voice = '/home/user/app/images/Recording.m4a' | |
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="user_voice_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
with open(user_voice, 'rb') as source_file: | |
file_contents = source_file.read() | |
temp_file.write(file_contents) | |
temp_file.flush() | |
user_voice_path = temp_file.name | |
# user_voice.save(user_voice_path) | |
print('user_voice_path',user_voice_path) | |
set_api_key("92e149985ea2732b4359c74346c3daee") | |
voice = clone(name = "User Cloned Voice", | |
files = [user_voice_path] ) | |
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
for chunk in audio: | |
temp_file.write(chunk) | |
driven_audio_path = temp_file.name | |
print('driven_audio_path',driven_audio_path) | |
# elevenlabs.save(audio, driven_audio_path) | |
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name) | |
result_folder = os.path.join(save_dir, "results") | |
os.makedirs(result_folder, exist_ok=True) | |
ref_pose_video_path = None | |
if ref_pose_video: | |
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file: | |
ref_pose_video_path = temp_file.name | |
ref_pose_video.save(ref_pose_video_path) | |
print('ref_pose_video_path',ref_pose_video_path) | |
except Exception as e: | |
app.logger.error(f"An error occurred: {e}") | |
return "An error occurred", 500 | |
# Example of using the class with some hypothetical paths | |
args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path) | |
if torch.cuda.is_available() and not args.cpu: | |
args.device = "cuda" | |
else: | |
args.device = "cpu" | |
generation_thread = threading.Thread(target=main, args=(args,)) | |
app.config['generation_thread'] = generation_thread | |
generation_thread.start() | |
response_data = {"message": "Video generation started", | |
"process_id": generation_thread.ident} | |
return jsonify(response_data) | |
# base64_video = main(args) | |
# return jsonify({"base64_video": base64_video}) | |
#else: | |
# return 'Unsupported HTTP method', 405 | |
def check_generation_status(): | |
global TEMP_DIR | |
response = {"base64_video": "","text_prompt":"", "status": ""} | |
process_id = request.args.get('process_id', None) | |
# process_id is required to check the status for that specific process | |
if process_id: | |
generation_thread = app.config.get('generation_thread') | |
if generation_thread and generation_thread.ident == int(process_id) and generation_thread.is_alive(): | |
return jsonify({"status": "in_progress"}), 200 | |
elif app.config.get('temp_response'): | |
# app.config['temp_response']['status'] = 'completed' | |
final_response = app.config['temp_response'] | |
response["base64_video"] = final_response | |
response["text_prompt"] = app.config.get('text_prompt') | |
response["duration"] = app.config.get('final_video_duration') | |
response["status"] = "completed" | |
final_video_path = app.config['final_video_path'] | |
print('final_video_path',final_video_path) | |
if final_video_path and os.path.exists(final_video_path): | |
os.remove(final_video_path) | |
print("Deleted video file:", final_video_path) | |
TEMP_DIR.cleanup() | |
# print("Temporary Directory:", TEMP_DIR.name) | |
# if TEMP_DIR: | |
# print("Contents of Temporary Directory:") | |
# for filename in os.listdir(TEMP_DIR.name): | |
# print(filename) | |
# else: | |
# print("Temporary Directory is None or already cleaned up.") | |
end_time = time.time() | |
total_time = round(end_time - start_time, 2) | |
print("Total time taken for execution:", total_time, " seconds") | |
return jsonify(response) | |
return jsonify({"error":"No process id provided"}) | |
def health_status(): | |
response = {"online": "true"} | |
return jsonify(response) | |
if __name__ == '__main__': | |
app.run(debug=True) |