Spanicin's picture
Upload 141 files
04c1e71 verified
raw
history blame
20.7 kB
from torch import nn
import torch.nn.functional as F
import torch
from src.facerender.sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d
from src.facerender.sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d
import torch.nn.utils.spectral_norm as spectral_norm
def kp2gaussian(kp, spatial_size, kp_variance):
"""
Transform a keypoint into gaussian like representation
"""
mean = kp['value']
coordinate_grid = make_coordinate_grid(spatial_size, mean.type())
number_of_leading_dimensions = len(mean.shape) - 1
shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
coordinate_grid = coordinate_grid.view(*shape)
repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1)
coordinate_grid = coordinate_grid.repeat(*repeats)
# Preprocess kp shape
shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3)
mean = mean.view(*shape)
mean_sub = (coordinate_grid - mean)
out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
return out
def make_coordinate_grid_2d(spatial_size, type):
"""
Create a meshgrid [-1,1] x [-1,1] of given spatial_size.
"""
h, w = spatial_size
x = torch.arange(w).type(type)
y = torch.arange(h).type(type)
x = (2 * (x / (w - 1)) - 1)
y = (2 * (y / (h - 1)) - 1)
yy = y.view(-1, 1).repeat(1, w)
xx = x.view(1, -1).repeat(h, 1)
meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)
return meshed
def make_coordinate_grid(spatial_size, type):
d, h, w = spatial_size
x = torch.arange(w).type(type)
y = torch.arange(h).type(type)
z = torch.arange(d).type(type)
x = (2 * (x / (w - 1)) - 1)
y = (2 * (y / (h - 1)) - 1)
z = (2 * (z / (d - 1)) - 1)
yy = y.view(1, -1, 1).repeat(d, 1, w)
xx = x.view(1, 1, -1).repeat(d, h, 1)
zz = z.view(-1, 1, 1).repeat(1, h, w)
meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3)
return meshed
class ResBottleneck(nn.Module):
def __init__(self, in_features, stride):
super(ResBottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features//4, kernel_size=1)
self.conv2 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features//4, kernel_size=3, padding=1, stride=stride)
self.conv3 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features, kernel_size=1)
self.norm1 = BatchNorm2d(in_features//4, affine=True)
self.norm2 = BatchNorm2d(in_features//4, affine=True)
self.norm3 = BatchNorm2d(in_features, affine=True)
self.stride = stride
if self.stride != 1:
self.skip = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=1, stride=stride)
self.norm4 = BatchNorm2d(in_features, affine=True)
def forward(self, x):
out = self.conv1(x)
out = self.norm1(out)
out = F.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv3(out)
out = self.norm3(out)
if self.stride != 1:
x = self.skip(x)
x = self.norm4(x)
out += x
out = F.relu(out)
return out
class ResBlock2d(nn.Module):
"""
Res block, preserve spatial resolution.
"""
def __init__(self, in_features, kernel_size, padding):
super(ResBlock2d, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.norm1 = BatchNorm2d(in_features, affine=True)
self.norm2 = BatchNorm2d(in_features, affine=True)
def forward(self, x):
out = self.norm1(x)
out = F.relu(out)
out = self.conv1(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv2(out)
out += x
return out
class ResBlock3d(nn.Module):
"""
Res block, preserve spatial resolution.
"""
def __init__(self, in_features, kernel_size, padding):
super(ResBlock3d, self).__init__()
self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
padding=padding)
self.norm1 = BatchNorm3d(in_features, affine=True)
self.norm2 = BatchNorm3d(in_features, affine=True)
def forward(self, x):
out = self.norm1(x)
out = F.relu(out)
out = self.conv1(out)
out = self.norm2(out)
out = F.relu(out)
out = self.conv2(out)
out += x
return out
class UpBlock2d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(UpBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm2d(out_features, affine=True)
def forward(self, x):
out = F.interpolate(x, scale_factor=2)
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class UpBlock3d(nn.Module):
"""
Upsampling block for use in decoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(UpBlock3d, self).__init__()
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm3d(out_features, affine=True)
def forward(self, x):
# out = F.interpolate(x, scale_factor=(1, 2, 2), mode='trilinear')
out = F.interpolate(x, scale_factor=(1, 2, 2))
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class DownBlock2d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm2d(out_features, affine=True)
self.pool = nn.AvgPool2d(kernel_size=(2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class DownBlock3d(nn.Module):
"""
Downsampling block for use in encoder.
"""
def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
super(DownBlock3d, self).__init__()
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups, stride=(1, 2, 2))
'''
self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
padding=padding, groups=groups)
self.norm = BatchNorm3d(out_features, affine=True)
self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2))
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = F.relu(out)
out = self.pool(out)
return out
class SameBlock2d(nn.Module):
"""
Simple block, preserve spatial resolution.
"""
def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False):
super(SameBlock2d, self).__init__()
self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features,
kernel_size=kernel_size, padding=padding, groups=groups)
self.norm = BatchNorm2d(out_features, affine=True)
if lrelu:
self.ac = nn.LeakyReLU()
else:
self.ac = nn.ReLU()
def forward(self, x):
out = self.conv(x)
out = self.norm(out)
out = self.ac(out)
return out
class Encoder(nn.Module):
"""
Hourglass Encoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Encoder, self).__init__()
down_blocks = []
for i in range(num_blocks):
down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)),
min(max_features, block_expansion * (2 ** (i + 1))),
kernel_size=3, padding=1))
self.down_blocks = nn.ModuleList(down_blocks)
def forward(self, x):
outs = [x]
for down_block in self.down_blocks:
outs.append(down_block(outs[-1]))
return outs
class Decoder(nn.Module):
"""
Hourglass Decoder
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Decoder, self).__init__()
up_blocks = []
for i in range(num_blocks)[::-1]:
in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
out_filters = min(max_features, block_expansion * (2 ** i))
up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
self.up_blocks = nn.ModuleList(up_blocks)
# self.out_filters = block_expansion
self.out_filters = block_expansion + in_features
self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1)
self.norm = BatchNorm3d(self.out_filters, affine=True)
def forward(self, x):
out = x.pop()
# for up_block in self.up_blocks[:-1]:
for up_block in self.up_blocks:
out = up_block(out)
skip = x.pop()
out = torch.cat([out, skip], dim=1)
# out = self.up_blocks[-1](out)
out = self.conv(out)
out = self.norm(out)
out = F.relu(out)
return out
class Hourglass(nn.Module):
"""
Hourglass architecture.
"""
def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
super(Hourglass, self).__init__()
self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
self.out_filters = self.decoder.out_filters
def forward(self, x):
return self.decoder(self.encoder(x))
class KPHourglass(nn.Module):
"""
Hourglass architecture.
"""
def __init__(self, block_expansion, in_features, reshape_features, reshape_depth, num_blocks=3, max_features=256):
super(KPHourglass, self).__init__()
self.down_blocks = nn.Sequential()
for i in range(num_blocks):
self.down_blocks.add_module('down'+ str(i), DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)),
min(max_features, block_expansion * (2 ** (i + 1))),
kernel_size=3, padding=1))
in_filters = min(max_features, block_expansion * (2 ** num_blocks))
self.conv = nn.Conv2d(in_channels=in_filters, out_channels=reshape_features, kernel_size=1)
self.up_blocks = nn.Sequential()
for i in range(num_blocks):
in_filters = min(max_features, block_expansion * (2 ** (num_blocks - i)))
out_filters = min(max_features, block_expansion * (2 ** (num_blocks - i - 1)))
self.up_blocks.add_module('up'+ str(i), UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1))
self.reshape_depth = reshape_depth
self.out_filters = out_filters
def forward(self, x):
out = self.down_blocks(x)
out = self.conv(out)
bs, c, h, w = out.shape
out = out.view(bs, c//self.reshape_depth, self.reshape_depth, h, w)
out = self.up_blocks(out)
return out
class AntiAliasInterpolation2d(nn.Module):
"""
Band-limited downsampling, for better preservation of the input signal.
"""
def __init__(self, channels, scale):
super(AntiAliasInterpolation2d, self).__init__()
sigma = (1 / scale - 1) / 2
kernel_size = 2 * round(sigma * 4) + 1
self.ka = kernel_size // 2
self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka
kernel_size = [kernel_size, kernel_size]
sigma = [sigma, sigma]
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid(
[
torch.arange(size, dtype=torch.float32)
for size in kernel_size
]
)
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2))
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer('weight', kernel)
self.groups = channels
self.scale = scale
inv_scale = 1 / scale
self.int_inv_scale = int(inv_scale)
def forward(self, input):
if self.scale == 1.0:
return input
out = F.pad(input, (self.ka, self.kb, self.ka, self.kb))
out = F.conv2d(out, weight=self.weight, groups=self.groups)
out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale]
return out
class SPADE(nn.Module):
def __init__(self, norm_nc, label_nc):
super().__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
nhidden = 128
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU())
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
def forward(self, x, segmap):
normalized = self.param_free_norm(x)
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
actv = self.mlp_shared(segmap)
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
out = normalized * (1 + gamma) + beta
return out
class SPADEResnetBlock(nn.Module):
def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1):
super().__init__()
# Attributes
self.learned_shortcut = (fin != fout)
fmiddle = min(fin, fout)
self.use_se = use_se
# create conv layers
self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation)
self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation)
if self.learned_shortcut:
self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False)
# apply spectral norm if specified
if 'spectral' in norm_G:
self.conv_0 = spectral_norm(self.conv_0)
self.conv_1 = spectral_norm(self.conv_1)
if self.learned_shortcut:
self.conv_s = spectral_norm(self.conv_s)
# define normalization layers
self.norm_0 = SPADE(fin, label_nc)
self.norm_1 = SPADE(fmiddle, label_nc)
if self.learned_shortcut:
self.norm_s = SPADE(fin, label_nc)
def forward(self, x, seg1):
x_s = self.shortcut(x, seg1)
dx = self.conv_0(self.actvn(self.norm_0(x, seg1)))
dx = self.conv_1(self.actvn(self.norm_1(dx, seg1)))
out = x_s + dx
return out
def shortcut(self, x, seg1):
if self.learned_shortcut:
x_s = self.conv_s(self.norm_s(x, seg1))
else:
x_s = x
return x_s
def actvn(self, x):
return F.leaky_relu(x, 2e-1)
class audio2image(nn.Module):
def __init__(self, generator, kp_extractor, he_estimator_video, he_estimator_audio, train_params):
super().__init__()
# Attributes
self.generator = generator
self.kp_extractor = kp_extractor
self.he_estimator_video = he_estimator_video
self.he_estimator_audio = he_estimator_audio
self.train_params = train_params
def headpose_pred_to_degree(self, pred):
device = pred.device
idx_tensor = [idx for idx in range(66)]
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
pred = F.softmax(pred)
degree = torch.sum(pred*idx_tensor, 1) * 3 - 99
return degree
def get_rotation_matrix(self, yaw, pitch, roll):
yaw = yaw / 180 * 3.14
pitch = pitch / 180 * 3.14
roll = roll / 180 * 3.14
roll = roll.unsqueeze(1)
pitch = pitch.unsqueeze(1)
yaw = yaw.unsqueeze(1)
roll_mat = torch.cat([torch.ones_like(roll), torch.zeros_like(roll), torch.zeros_like(roll),
torch.zeros_like(roll), torch.cos(roll), -torch.sin(roll),
torch.zeros_like(roll), torch.sin(roll), torch.cos(roll)], dim=1)
roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3)
pitch_mat = torch.cat([torch.cos(pitch), torch.zeros_like(pitch), torch.sin(pitch),
torch.zeros_like(pitch), torch.ones_like(pitch), torch.zeros_like(pitch),
-torch.sin(pitch), torch.zeros_like(pitch), torch.cos(pitch)], dim=1)
pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3)
yaw_mat = torch.cat([torch.cos(yaw), -torch.sin(yaw), torch.zeros_like(yaw),
torch.sin(yaw), torch.cos(yaw), torch.zeros_like(yaw),
torch.zeros_like(yaw), torch.zeros_like(yaw), torch.ones_like(yaw)], dim=1)
yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3)
rot_mat = torch.einsum('bij,bjk,bkm->bim', roll_mat, pitch_mat, yaw_mat)
return rot_mat
def keypoint_transformation(self, kp_canonical, he):
kp = kp_canonical['value'] # (bs, k, 3)
yaw, pitch, roll = he['yaw'], he['pitch'], he['roll']
t, exp = he['t'], he['exp']
yaw = self.headpose_pred_to_degree(yaw)
pitch = self.headpose_pred_to_degree(pitch)
roll = self.headpose_pred_to_degree(roll)
rot_mat = self.get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3)
# keypoint rotation
kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp)
# keypoint translation
t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1)
kp_t = kp_rotated + t
# add expression deviation
exp = exp.view(exp.shape[0], -1, 3)
kp_transformed = kp_t + exp
return {'value': kp_transformed}
def forward(self, source_image, target_audio):
pose_source = self.he_estimator_video(source_image)
pose_generated = self.he_estimator_audio(target_audio)
kp_canonical = self.kp_extractor(source_image)
kp_source = self.keypoint_transformation(kp_canonical, pose_source)
kp_transformed_generated = self.keypoint_transformation(kp_canonical, pose_generated)
generated = self.generator(source_image, kp_source=kp_source, kp_driving=kp_transformed_generated)
return generated