Spaces:
Paused
Paused
import torch | |
from time import strftime | |
import os, sys, time | |
from argparse import ArgumentParser | |
from src.utils.preprocess import CropAndExtract | |
from src.test_audio2coeff import Audio2Coeff | |
from src.facerender.animate import AnimateFromCoeff | |
from src.generate_batch import get_data | |
from src.generate_facerender_batch import get_facerender_data | |
def main(args): | |
#torch.backends.cudnn.enabled = False | |
pic_path = args.source_image | |
audio_path = args.driven_audio | |
save_dir = os.path.join(args.result_dir, strftime("%Y_%m_%d_%H.%M.%S")) | |
os.makedirs(save_dir, exist_ok=True) | |
pose_style = args.pose_style | |
device = args.device | |
batch_size = args.batch_size | |
input_yaw_list = args.input_yaw | |
input_pitch_list = args.input_pitch | |
input_roll_list = args.input_roll | |
ref_eyeblink = args.ref_eyeblink | |
ref_pose = args.ref_pose | |
current_code_path = sys.argv[0] | |
current_root_path = os.path.split(current_code_path)[0] | |
os.environ['TORCH_HOME']=os.path.join(current_root_path, args.checkpoint_dir) | |
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat') | |
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth') | |
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting') | |
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth') | |
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth') | |
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') | |
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth') | |
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') | |
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar') | |
if args.preprocess == 'full': | |
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml') | |
else: | |
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar') | |
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml') | |
#init model | |
print(path_of_net_recon_model) | |
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device) | |
print(audio2pose_checkpoint) | |
print(audio2exp_checkpoint) | |
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path, | |
audio2exp_checkpoint, audio2exp_yaml_path, | |
wav2lip_checkpoint, device) | |
print(free_view_checkpoint) | |
print(mapping_checkpoint) | |
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint, | |
facerender_yaml_path, device) | |
#crop image and extract 3dmm from image | |
first_frame_dir = os.path.join(save_dir, 'first_frame_dir') | |
os.makedirs(first_frame_dir, exist_ok=True) | |
print('3DMM Extraction for source image') | |
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True) | |
if first_coeff_path is None: | |
print("Can't get the coeffs of the input") | |
return | |
if ref_eyeblink is not None: | |
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0] | |
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname) | |
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True) | |
print('3DMM Extraction for the reference video providing eye blinking') | |
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir) | |
else: | |
ref_eyeblink_coeff_path=None | |
if ref_pose is not None: | |
if ref_pose == ref_eyeblink: | |
ref_pose_coeff_path = ref_eyeblink_coeff_path | |
else: | |
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0] | |
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname) | |
os.makedirs(ref_pose_frame_dir, exist_ok=True) | |
print('3DMM Extraction for the reference video providing pose') | |
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir) | |
else: | |
ref_pose_coeff_path=None | |
#audio2ceoff | |
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still) | |
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path) | |
# 3dface render | |
if args.face3dvis: | |
from src.face3d.visualize import gen_composed_video | |
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4')) | |
#coeff2video | |
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, | |
batch_size, input_yaw_list, input_pitch_list, input_roll_list, | |
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess) | |
animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \ | |
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess) | |
if __name__ == '__main__': | |
parser = ArgumentParser() | |
parser.add_argument("--driven_audio", default='./examples/driven_audio/bus_chinese.wav', help="path to driven audio") | |
parser.add_argument("--source_image", default='./examples/source_image/full_body_2.png', help="path to source image") | |
parser.add_argument("--ref_eyeblink", default=None, help="path to reference video providing eye blinking") | |
parser.add_argument("--ref_pose", default=None, help="path to reference video providing pose") | |
parser.add_argument("--checkpoint_dir", default='./checkpoints', help="path to output") | |
parser.add_argument("--result_dir", default='./results', help="path to output") | |
parser.add_argument("--pose_style", type=int, default=0, help="input pose style from [0, 46)") | |
parser.add_argument("--batch_size", type=int, default=2, help="the batch size of facerender") | |
parser.add_argument("--expression_scale", type=float, default=1., help="the batch size of facerender") | |
parser.add_argument('--input_yaw', nargs='+', type=int, default=None, help="the input yaw degree of the user ") | |
parser.add_argument('--input_pitch', nargs='+', type=int, default=None, help="the input pitch degree of the user") | |
parser.add_argument('--input_roll', nargs='+', type=int, default=None, help="the input roll degree of the user") | |
parser.add_argument('--enhancer', type=str, default=None, help="Face enhancer, [gfpgan, RestoreFormer]") | |
parser.add_argument('--background_enhancer', type=str, default=None, help="background enhancer, [realesrgan]") | |
parser.add_argument("--cpu", dest="cpu", action="store_true") | |
parser.add_argument("--face3dvis", action="store_true", help="generate 3d face and 3d landmarks") | |
parser.add_argument("--still", action="store_true", help="can crop back to the original videos for the full body aniamtion") | |
parser.add_argument("--preprocess", default='crop', choices=['crop', 'resize', 'full'], help="how to preprocess the images" ) | |
# net structure and parameters | |
parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='useless') | |
parser.add_argument('--init_path', type=str, default=None, help='Useless') | |
parser.add_argument('--use_last_fc',default=False, help='zero initialize the last fc') | |
parser.add_argument('--bfm_folder', type=str, default='./checkpoints/BFM_Fitting/') | |
parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model') | |
# default renderer parameters | |
parser.add_argument('--focal', type=float, default=1015.) | |
parser.add_argument('--center', type=float, default=112.) | |
parser.add_argument('--camera_d', type=float, default=10.) | |
parser.add_argument('--z_near', type=float, default=5.) | |
parser.add_argument('--z_far', type=float, default=15.) | |
args = parser.parse_args() | |
if torch.cuda.is_available() and not args.cpu: | |
args.device = "cuda" | |
else: | |
args.device = "cpu" | |
main(args) | |