Spaces:
Paused
Paused
from __future__ import print_function | |
import os | |
import torch | |
from torch.utils.model_zoo import load_url | |
from enum import Enum | |
import numpy as np | |
import cv2 | |
try: | |
import urllib.request as request_file | |
except BaseException: | |
import urllib as request_file | |
from .models import FAN, ResNetDepth | |
from .utils import * | |
class LandmarksType(Enum): | |
"""Enum class defining the type of landmarks to detect. | |
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face | |
``_2halfD`` - this points represent the projection of the 3D points into 3D | |
``_3D`` - detect the points ``(x,y,z)``` in a 3D space | |
""" | |
_2D = 1 | |
_2halfD = 2 | |
_3D = 3 | |
class NetworkSize(Enum): | |
# TINY = 1 | |
# SMALL = 2 | |
# MEDIUM = 3 | |
LARGE = 4 | |
def __new__(cls, value): | |
member = object.__new__(cls) | |
member._value_ = value | |
return member | |
def __int__(self): | |
return self.value | |
ROOT = os.path.dirname(os.path.abspath(__file__)) | |
class FaceAlignment: | |
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE, | |
device='cuda', flip_input=False, face_detector='sfd', verbose=False): | |
self.device = device | |
self.flip_input = flip_input | |
self.landmarks_type = landmarks_type | |
self.verbose = verbose | |
network_size = int(network_size) | |
if 'cuda' in device: | |
torch.backends.cudnn.benchmark = True | |
# Get the face detector | |
face_detector_module = __import__('videoretalking.third_part.face_detection.detection.' + face_detector, | |
globals(), locals(), [face_detector], 0) | |
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose) | |
def get_detections_for_batch(self, images): | |
images = images[..., ::-1] | |
detected_faces = self.face_detector.detect_from_batch(images.copy()) | |
results = [] | |
for i, d in enumerate(detected_faces): | |
if len(d) == 0: | |
results.append(None) | |
continue | |
d = d[0] | |
d = np.clip(d, 0, None) | |
x1, y1, x2, y2 = map(int, d[:-1]) | |
results.append((x1, y1, x2, y2)) | |
return results |