Spanicin's picture
Upload 9 files
cfc39a0 verified
import numpy as np
import cv2, os, sys, subprocess, platform, torch
from tqdm import tqdm
from PIL import Image
from scipy.io import loadmat
sys.path.insert(0, 'third_part')
sys.path.insert(0, 'third_part/GPEN')
# sys.path.insert(0, 'third_part/GFPGAN')
# 3dmm extraction
from third_part.face3d.util.preprocess import align_img
from third_part.face3d.util.load_mats import load_lm3d
from third_part.face3d.extract_kp_videos import KeypointExtractor
# face enhancement
from third_part.GPEN.gpen_face_enhancer import FaceEnhancement
# from third_part.GFPGAN.gfpgan import GFPGANer
# expression control
from third_part.ganimation_replicate.model.ganimation import GANimationModel
from utils import audio
from utils.ffhq_preprocess import Croper
from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image
from utils.inference_utils import Laplacian_Pyramid_Blending_with_mask, face_detect, load_model, options, split_coeff, \
trans_image, transform_semantic, find_crop_norm_ratio, load_face3d_net, exp_aus_dict
import warnings
warnings.filterwarnings("ignore")
args = options()
def main():
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('[Info] Using {} for inference.'.format(device))
os.makedirs(os.path.join('temp', args.tmp_dir), exist_ok=True)
enhancer = FaceEnhancement(base_dir='checkpoints', size=512, model='GPEN-BFR-512', use_sr=False, \
sr_model='rrdb_realesrnet_psnr', channel_multiplier=2, narrow=1, device=device)
# restorer = GFPGANer(model_path='checkpoints/GFPGANv1.3.pth', upscale=1, arch='clean', \
# channel_multiplier=2, bg_upsampler=None)
base_name = args.face.split('/')[-1]
if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
args.static = True
if not os.path.isfile(args.face):
raise ValueError('--face argument must be a valid path to video/image file')
elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
full_frames = [cv2.imread(args.face)]
fps = args.fps
else:
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
full_frames = []
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
y1, y2, x1, x2 = args.crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
full_frames.append(frame)
print ("[Step 0] Number of frames available for inference: "+str(len(full_frames)))
# face detection & cropping, cropping the first frame as the style of FFHQ
croper = Croper('checkpoints/shape_predictor_68_face_landmarks.dat')
full_frames_RGB = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames]
full_frames_RGB, crop, quad = croper.crop(full_frames_RGB, xsize=512)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
oy1, oy2, ox1, ox2 = cly+ly, min(cly+ry, full_frames[0].shape[0]), clx+lx, min(clx+rx, full_frames[0].shape[1])
# original_size = (ox2 - ox1, oy2 - oy1)
frames_pil = [Image.fromarray(cv2.resize(frame,(256,256))) for frame in full_frames_RGB]
# get the landmark according to the detected face.
if not os.path.isfile('temp/'+base_name+'_landmarks.txt') or args.re_preprocess:
print('[Step 1] Landmarks Extraction in Video.')
kp_extractor = KeypointExtractor()
lm = kp_extractor.extract_keypoint(frames_pil, './temp/'+base_name+'_landmarks.txt')
else:
print('[Step 1] Using saved landmarks.')
lm = np.loadtxt('temp/'+base_name+'_landmarks.txt').astype(np.float32)
lm = lm.reshape([len(full_frames), -1, 2])
if not os.path.isfile('temp/'+base_name+'_coeffs.npy') or args.exp_img is not None or args.re_preprocess:
net_recon = load_face3d_net(args.face3d_net_path, device)
lm3d_std = load_lm3d('checkpoints/BFM')
video_coeffs = []
for idx in tqdm(range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:"):
frame = frames_pil[idx]
W, H = frame.size
lm_idx = lm[idx].reshape([-1, 2])
if np.mean(lm_idx) == -1:
lm_idx = (lm3d_std[:, :2]+1) / 2.
lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1)
else:
lm_idx[:, -1] = H - 1 - lm_idx[:, -1]
trans_params, im_idx, lm_idx, _ = align_img(frame, lm_idx, lm3d_std)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
im_idx_tensor = torch.tensor(np.array(im_idx)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
with torch.no_grad():
coeffs = split_coeff(net_recon(im_idx_tensor))
pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs}
pred_coeff = np.concatenate([pred_coeff['id'], pred_coeff['exp'], pred_coeff['tex'], pred_coeff['angle'],\
pred_coeff['gamma'], pred_coeff['trans'], trans_params[None]], 1)
video_coeffs.append(pred_coeff)
semantic_npy = np.array(video_coeffs)[:,0]
np.save('temp/'+base_name+'_coeffs.npy', semantic_npy)
else:
print('[Step 2] Using saved coeffs.')
semantic_npy = np.load('temp/'+base_name+'_coeffs.npy').astype(np.float32)
# generate the 3dmm coeff from a single image
if args.exp_img is not None and ('.png' in args.exp_img or '.jpg' in args.exp_img):
print('extract the exp from',args.exp_img)
exp_pil = Image.open(args.exp_img).convert('RGB')
lm3d_std = load_lm3d('third_part/face3d/BFM')
W, H = exp_pil.size
kp_extractor = KeypointExtractor()
lm_exp = kp_extractor.extract_keypoint([exp_pil], 'temp/'+base_name+'_temp.txt')[0]
if np.mean(lm_exp) == -1:
lm_exp = (lm3d_std[:, :2] + 1) / 2.
lm_exp = np.concatenate(
[lm_exp[:, :1] * W, lm_exp[:, 1:2] * H], 1)
else:
lm_exp[:, -1] = H - 1 - lm_exp[:, -1]
trans_params, im_exp, lm_exp, _ = align_img(exp_pil, lm_exp, lm3d_std)
trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32)
im_exp_tensor = torch.tensor(np.array(im_exp)/255., dtype=torch.float32).permute(2, 0, 1).to(device).unsqueeze(0)
with torch.no_grad():
expression = split_coeff(net_recon(im_exp_tensor))['exp'][0]
del net_recon
elif args.exp_img == 'smile':
expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_mouth'])[0]
else:
print('using expression center')
expression = torch.tensor(loadmat('checkpoints/expression.mat')['expression_center'])[0]
# load DNet, model(LNet and ENet)
D_Net, model = load_model(args, device)
if not os.path.isfile('temp/'+base_name+'_stablized.npy') or args.re_preprocess:
imgs = []
for idx in tqdm(range(len(frames_pil)), desc="[Step 3] Stabilize the expression In Video:"):
if args.one_shot:
source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[0:1]
else:
source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device)
semantic_source_numpy = semantic_npy[idx:idx+1]
ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy)
coeff = transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device)
# hacking the new expression
coeff[:, :64, :] = expression[None, :64, None].to(device)
with torch.no_grad():
output = D_Net(source_img, coeff)
img_stablized = np.uint8((output['fake_image'].squeeze(0).permute(1,2,0).cpu().clamp_(-1, 1).numpy() + 1 )/2. * 255)
imgs.append(cv2.cvtColor(img_stablized,cv2.COLOR_RGB2BGR))
np.save('temp/'+base_name+'_stablized.npy',imgs)
del D_Net
else:
print('[Step 3] Using saved stabilized video.')
imgs = np.load('temp/'+base_name+'_stablized.npy')
torch.cuda.empty_cache()
if not args.audio.endswith('.wav'):
command = 'ffmpeg -loglevel error -y -i {} -strict -2 {}'.format(args.audio, 'temp/{}/temp.wav'.format(args.tmp_dir))
subprocess.call(command, shell=True)
args.audio = 'temp/{}/temp.wav'.format(args.tmp_dir)
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
if np.isnan(mel.reshape(-1)).sum() > 0:
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80./fps, 0, []
while True:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > len(mel[0]):
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
break
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
i += 1
print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks)))
imgs = imgs[:len(mel_chunks)]
full_frames = full_frames[:len(mel_chunks)]
lm = lm[:len(mel_chunks)]
imgs_enhanced = []
for idx in tqdm(range(len(imgs)), desc='[Step 5] Reference Enhancement'):
img = imgs[idx]
pred, _, _ = enhancer.process(img, img, face_enhance=True, possion_blending=False)
imgs_enhanced.append(pred)
gen = datagen(imgs_enhanced.copy(), mel_chunks, full_frames, None, (oy1,oy2,ox1,ox2))
frame_h, frame_w = full_frames[0].shape[:-1]
out = cv2.VideoWriter('temp/{}/result.mp4'.format(args.tmp_dir), cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_w, frame_h))
if args.up_face != 'original':
instance = GANimationModel()
instance.initialize()
instance.setup()
kp_extractor = KeypointExtractor()
for i, (img_batch, mel_batch, frames, coords, img_original, f_frames) in enumerate(tqdm(gen, desc='[Step 6] Lip Synthesis:', total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)))):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
img_original = torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device)/255. # BGR -> RGB
with torch.no_grad():
incomplete, reference = torch.split(img_batch, 3, dim=1)
pred, low_res = model(mel_batch, img_batch, reference)
pred = torch.clamp(pred, 0, 1)
if args.up_face in ['sad', 'angry', 'surprise']:
tar_aus = exp_aus_dict[args.up_face]
else:
pass
if args.up_face == 'original':
cur_gen_faces = img_original
else:
test_batch = {'src_img': torch.nn.functional.interpolate((img_original * 2 - 1), size=(128, 128), mode='bilinear'),
'tar_aus': tar_aus.repeat(len(incomplete), 1)}
instance.feed_batch(test_batch)
instance.forward()
cur_gen_faces = torch.nn.functional.interpolate(instance.fake_img / 2. + 0.5, size=(384, 384), mode='bilinear')
if args.without_rl1 is not False:
incomplete, reference = torch.split(img_batch, 3, dim=1)
mask = torch.where(incomplete==0, torch.ones_like(incomplete), torch.zeros_like(incomplete))
pred = pred * mask + cur_gen_faces * (1 - mask)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
torch.cuda.empty_cache()
for p, f, xf, c in zip(pred, frames, f_frames, coords):
y1, y2, x1, x2 = c
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
ff = xf.copy()
ff[y1:y2, x1:x2] = p
# month region enhancement by GFPGAN
# cropped_faces, restored_faces, restored_img = restorer.enhance(
# ff, has_aligned=False, only_center_face=True, paste_back=True)
restored_img = ff
mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0]
mouse_mask = np.zeros_like(restored_img)
tmp_mask = enhancer.faceparser.process(restored_img[y1:y2, x1:x2], mm)[0]
mouse_mask[y1:y2, x1:x2]= cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.
height, width = ff.shape[:2]
restored_img, ff, full_mask = [cv2.resize(x, (512, 512)) for x in (restored_img, ff, np.float32(mouse_mask))]
img = Laplacian_Pyramid_Blending_with_mask(restored_img, ff, full_mask[:, :, 0], 10)
pp = np.uint8(cv2.resize(np.clip(img, 0 ,255), (width, height)))
pp, orig_faces, enhanced_faces = enhancer.process(pp, xf, bbox=c, face_enhance=False, possion_blending=True)
out.write(pp)
out.release()
if not os.path.isdir(os.path.dirname(args.outfile)):
os.makedirs(os.path.dirname(args.outfile), exist_ok=True)
command = 'ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/{}/result.mp4'.format(args.tmp_dir), args.outfile)
subprocess.call(command, shell=platform.system() != 'Windows')
print('outfile:', args.outfile)
# frames:256x256, full_frames: original size
def datagen(frames, mels, full_frames, frames_pil, cox):
img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = [], [], [], [], [], []
base_name = args.face.split('/')[-1]
refs = []
image_size = 256
# original frames
kp_extractor = KeypointExtractor()
fr_pil = [Image.fromarray(frame) for frame in frames]
lms = kp_extractor.extract_keypoint(fr_pil, 'temp/'+base_name+'x12_landmarks.txt')
frames_pil = [ (lm, frame) for frame,lm in zip(fr_pil, lms)] # frames is the croped version of modified face
crops, orig_images, quads = crop_faces(image_size, frames_pil, scale=1.0, use_fa=True)
inverse_transforms = [calc_alignment_coefficients(quad + 0.5, [[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]]) for quad in quads]
del kp_extractor.detector
oy1,oy2,ox1,ox2 = cox
face_det_results = face_detect(full_frames, args, jaw_correction=True)
for inverse_transform, crop, full_frame, face_det in zip(inverse_transforms, crops, full_frames, face_det_results):
imc_pil = paste_image(inverse_transform, crop, Image.fromarray(
cv2.resize(full_frame[int(oy1):int(oy2), int(ox1):int(ox2)], (256, 256))))
ff = full_frame.copy()
ff[int(oy1):int(oy2), int(ox1):int(ox2)] = cv2.resize(np.array(imc_pil.convert('RGB')), (ox2 - ox1, oy2 - oy1))
oface, coords = face_det
y1, y2, x1, x2 = coords
refs.append(ff[y1: y2, x1:x2])
for i, m in enumerate(mels):
idx = 0 if args.static else i % len(frames)
frame_to_save = frames[idx].copy()
face = refs[idx]
oface, coords = face_det_results[idx].copy()
face = cv2.resize(face, (args.img_size, args.img_size))
oface = cv2.resize(oface, (args.img_size, args.img_size))
img_batch.append(oface)
ref_batch.append(face)
mel_batch.append(m)
coords_batch.append(coords)
frame_batch.append(frame_to_save)
full_frame_batch.append(full_frames[idx].copy())
if len(img_batch) >= args.LNet_batch_size:
img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch, ref_batch = [], [], [], [], [], [], []
if len(img_batch) > 0:
img_batch, mel_batch, ref_batch = np.asarray(img_batch), np.asarray(mel_batch), np.asarray(ref_batch)
img_masked = img_batch.copy()
img_original = img_batch.copy()
img_masked[:, args.img_size//2:] = 0
img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch
if __name__ == '__main__':
main()