Spaces:
Paused
Paused
Update videoretalking/third_part/GPEN/face_model/gpen_model.py
Browse files
videoretalking/third_part/GPEN/face_model/gpen_model.py
CHANGED
@@ -1,746 +1,746 @@
|
|
1 |
-
'''
|
2 |
-
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
|
3 |
-
@author: yangxy (yangtao9009@gmail.com)
|
4 |
-
'''
|
5 |
-
import math
|
6 |
-
import random
|
7 |
-
import functools
|
8 |
-
import operator
|
9 |
-
import itertools
|
10 |
-
|
11 |
-
import torch
|
12 |
-
from torch import nn
|
13 |
-
from torch.nn import functional as F
|
14 |
-
from torch.autograd import Function
|
15 |
-
|
16 |
-
from face_model.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
17 |
-
|
18 |
-
class PixelNorm(nn.Module):
|
19 |
-
def __init__(self):
|
20 |
-
super().__init__()
|
21 |
-
|
22 |
-
def forward(self, input):
|
23 |
-
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
24 |
-
|
25 |
-
|
26 |
-
def make_kernel(k):
|
27 |
-
k = torch.tensor(k, dtype=torch.float32)
|
28 |
-
|
29 |
-
if k.ndim == 1:
|
30 |
-
k = k[None, :] * k[:, None]
|
31 |
-
|
32 |
-
k /= k.sum()
|
33 |
-
|
34 |
-
return k
|
35 |
-
|
36 |
-
|
37 |
-
class Upsample(nn.Module):
|
38 |
-
def __init__(self, kernel, factor=2, device='cpu'):
|
39 |
-
super().__init__()
|
40 |
-
|
41 |
-
self.factor = factor
|
42 |
-
kernel = make_kernel(kernel) * (factor ** 2)
|
43 |
-
self.register_buffer('kernel', kernel)
|
44 |
-
|
45 |
-
p = kernel.shape[0] - factor
|
46 |
-
|
47 |
-
pad0 = (p + 1) // 2 + factor - 1
|
48 |
-
pad1 = p // 2
|
49 |
-
|
50 |
-
self.pad = (pad0, pad1)
|
51 |
-
self.device = device
|
52 |
-
|
53 |
-
def forward(self, input):
|
54 |
-
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad, device=self.device)
|
55 |
-
|
56 |
-
return out
|
57 |
-
|
58 |
-
|
59 |
-
class Downsample(nn.Module):
|
60 |
-
def __init__(self, kernel, factor=2, device='cpu'):
|
61 |
-
super().__init__()
|
62 |
-
|
63 |
-
self.factor = factor
|
64 |
-
kernel = make_kernel(kernel)
|
65 |
-
self.register_buffer('kernel', kernel)
|
66 |
-
|
67 |
-
p = kernel.shape[0] - factor
|
68 |
-
|
69 |
-
pad0 = (p + 1) // 2
|
70 |
-
pad1 = p // 2
|
71 |
-
|
72 |
-
self.pad = (pad0, pad1)
|
73 |
-
self.device = device
|
74 |
-
|
75 |
-
def forward(self, input):
|
76 |
-
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad, device=self.device)
|
77 |
-
|
78 |
-
return out
|
79 |
-
|
80 |
-
|
81 |
-
class Blur(nn.Module):
|
82 |
-
def __init__(self, kernel, pad, upsample_factor=1, device='cpu'):
|
83 |
-
super().__init__()
|
84 |
-
|
85 |
-
kernel = make_kernel(kernel)
|
86 |
-
|
87 |
-
if upsample_factor > 1:
|
88 |
-
kernel = kernel * (upsample_factor ** 2)
|
89 |
-
|
90 |
-
self.register_buffer('kernel', kernel)
|
91 |
-
|
92 |
-
self.pad = pad
|
93 |
-
self.device = device
|
94 |
-
|
95 |
-
def forward(self, input):
|
96 |
-
out = upfirdn2d(input, self.kernel, pad=self.pad, device=self.device)
|
97 |
-
|
98 |
-
return out
|
99 |
-
|
100 |
-
|
101 |
-
class EqualConv2d(nn.Module):
|
102 |
-
def __init__(
|
103 |
-
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
104 |
-
):
|
105 |
-
super().__init__()
|
106 |
-
|
107 |
-
self.weight = nn.Parameter(
|
108 |
-
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
109 |
-
)
|
110 |
-
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
111 |
-
|
112 |
-
self.stride = stride
|
113 |
-
self.padding = padding
|
114 |
-
|
115 |
-
if bias:
|
116 |
-
self.bias = nn.Parameter(torch.zeros(out_channel))
|
117 |
-
|
118 |
-
else:
|
119 |
-
self.bias = None
|
120 |
-
|
121 |
-
def forward(self, input):
|
122 |
-
out = F.conv2d(
|
123 |
-
input,
|
124 |
-
self.weight * self.scale,
|
125 |
-
bias=self.bias,
|
126 |
-
stride=self.stride,
|
127 |
-
padding=self.padding,
|
128 |
-
)
|
129 |
-
|
130 |
-
return out
|
131 |
-
|
132 |
-
def __repr__(self):
|
133 |
-
return (
|
134 |
-
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
135 |
-
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
136 |
-
)
|
137 |
-
|
138 |
-
|
139 |
-
class EqualLinear(nn.Module):
|
140 |
-
def __init__(
|
141 |
-
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, device='cpu'
|
142 |
-
):
|
143 |
-
super().__init__()
|
144 |
-
|
145 |
-
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
146 |
-
|
147 |
-
if bias:
|
148 |
-
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
149 |
-
|
150 |
-
else:
|
151 |
-
self.bias = None
|
152 |
-
|
153 |
-
self.activation = activation
|
154 |
-
self.device = device
|
155 |
-
|
156 |
-
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
157 |
-
self.lr_mul = lr_mul
|
158 |
-
|
159 |
-
def forward(self, input):
|
160 |
-
if self.activation:
|
161 |
-
out = F.linear(input, self.weight * self.scale)
|
162 |
-
out = fused_leaky_relu(out, self.bias * self.lr_mul, device=self.device)
|
163 |
-
|
164 |
-
else:
|
165 |
-
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
|
166 |
-
|
167 |
-
return out
|
168 |
-
|
169 |
-
def __repr__(self):
|
170 |
-
return (
|
171 |
-
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
172 |
-
)
|
173 |
-
|
174 |
-
|
175 |
-
class ScaledLeakyReLU(nn.Module):
|
176 |
-
def __init__(self, negative_slope=0.2):
|
177 |
-
super().__init__()
|
178 |
-
|
179 |
-
self.negative_slope = negative_slope
|
180 |
-
|
181 |
-
def forward(self, input):
|
182 |
-
out = F.leaky_relu(input, negative_slope=self.negative_slope)
|
183 |
-
|
184 |
-
return out * math.sqrt(2)
|
185 |
-
|
186 |
-
|
187 |
-
class ModulatedConv2d(nn.Module):
|
188 |
-
def __init__(
|
189 |
-
self,
|
190 |
-
in_channel,
|
191 |
-
out_channel,
|
192 |
-
kernel_size,
|
193 |
-
style_dim,
|
194 |
-
demodulate=True,
|
195 |
-
upsample=False,
|
196 |
-
downsample=False,
|
197 |
-
blur_kernel=[1, 3, 3, 1],
|
198 |
-
device='cpu'
|
199 |
-
):
|
200 |
-
super().__init__()
|
201 |
-
|
202 |
-
self.eps = 1e-8
|
203 |
-
self.kernel_size = kernel_size
|
204 |
-
self.in_channel = in_channel
|
205 |
-
self.out_channel = out_channel
|
206 |
-
self.upsample = upsample
|
207 |
-
self.downsample = downsample
|
208 |
-
|
209 |
-
if upsample:
|
210 |
-
factor = 2
|
211 |
-
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
212 |
-
pad0 = (p + 1) // 2 + factor - 1
|
213 |
-
pad1 = p // 2 + 1
|
214 |
-
|
215 |
-
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor, device=device)
|
216 |
-
|
217 |
-
if downsample:
|
218 |
-
factor = 2
|
219 |
-
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
220 |
-
pad0 = (p + 1) // 2
|
221 |
-
pad1 = p // 2
|
222 |
-
|
223 |
-
self.blur = Blur(blur_kernel, pad=(pad0, pad1), device=device)
|
224 |
-
|
225 |
-
fan_in = in_channel * kernel_size ** 2
|
226 |
-
self.scale = 1 / math.sqrt(fan_in)
|
227 |
-
self.padding = kernel_size // 2
|
228 |
-
|
229 |
-
self.weight = nn.Parameter(
|
230 |
-
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
231 |
-
)
|
232 |
-
|
233 |
-
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
234 |
-
|
235 |
-
self.demodulate = demodulate
|
236 |
-
|
237 |
-
def __repr__(self):
|
238 |
-
return (
|
239 |
-
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
240 |
-
f'upsample={self.upsample}, downsample={self.downsample})'
|
241 |
-
)
|
242 |
-
|
243 |
-
def forward(self, input, style):
|
244 |
-
batch, in_channel, height, width = input.shape
|
245 |
-
|
246 |
-
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
247 |
-
weight = self.scale * self.weight * style
|
248 |
-
|
249 |
-
if self.demodulate:
|
250 |
-
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
251 |
-
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
252 |
-
|
253 |
-
weight = weight.view(
|
254 |
-
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
255 |
-
)
|
256 |
-
|
257 |
-
if self.upsample:
|
258 |
-
input = input.view(1, batch * in_channel, height, width)
|
259 |
-
weight = weight.view(
|
260 |
-
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
261 |
-
)
|
262 |
-
weight = weight.transpose(1, 2).reshape(
|
263 |
-
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
264 |
-
)
|
265 |
-
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
266 |
-
_, _, height, width = out.shape
|
267 |
-
out = out.view(batch, self.out_channel, height, width)
|
268 |
-
out = self.blur(out)
|
269 |
-
|
270 |
-
elif self.downsample:
|
271 |
-
input = self.blur(input)
|
272 |
-
_, _, height, width = input.shape
|
273 |
-
input = input.view(1, batch * in_channel, height, width)
|
274 |
-
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
275 |
-
_, _, height, width = out.shape
|
276 |
-
out = out.view(batch, self.out_channel, height, width)
|
277 |
-
|
278 |
-
else:
|
279 |
-
input = input.view(1, batch * in_channel, height, width)
|
280 |
-
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
281 |
-
_, _, height, width = out.shape
|
282 |
-
out = out.view(batch, self.out_channel, height, width)
|
283 |
-
|
284 |
-
return out
|
285 |
-
|
286 |
-
|
287 |
-
class NoiseInjection(nn.Module):
|
288 |
-
def __init__(self, isconcat=True):
|
289 |
-
super().__init__()
|
290 |
-
|
291 |
-
self.isconcat = isconcat
|
292 |
-
self.weight = nn.Parameter(torch.zeros(1))
|
293 |
-
|
294 |
-
def forward(self, image, noise=None):
|
295 |
-
if noise is None:
|
296 |
-
batch, _, height, width = image.shape
|
297 |
-
noise = image.new_empty(batch, 1, height, width).normal_()
|
298 |
-
|
299 |
-
if self.isconcat:
|
300 |
-
return torch.cat((image, self.weight * noise), dim=1)
|
301 |
-
else:
|
302 |
-
return image + self.weight * noise
|
303 |
-
|
304 |
-
|
305 |
-
class ConstantInput(nn.Module):
|
306 |
-
def __init__(self, channel, size=4):
|
307 |
-
super().__init__()
|
308 |
-
|
309 |
-
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
310 |
-
|
311 |
-
def forward(self, input):
|
312 |
-
batch = input.shape[0]
|
313 |
-
out = self.input.repeat(batch, 1, 1, 1)
|
314 |
-
|
315 |
-
return out
|
316 |
-
|
317 |
-
|
318 |
-
class StyledConv(nn.Module):
|
319 |
-
def __init__(
|
320 |
-
self,
|
321 |
-
in_channel,
|
322 |
-
out_channel,
|
323 |
-
kernel_size,
|
324 |
-
style_dim,
|
325 |
-
upsample=False,
|
326 |
-
blur_kernel=[1, 3, 3, 1],
|
327 |
-
demodulate=True,
|
328 |
-
isconcat=True,
|
329 |
-
device='cpu'
|
330 |
-
):
|
331 |
-
super().__init__()
|
332 |
-
|
333 |
-
self.conv = ModulatedConv2d(
|
334 |
-
in_channel,
|
335 |
-
out_channel,
|
336 |
-
kernel_size,
|
337 |
-
style_dim,
|
338 |
-
upsample=upsample,
|
339 |
-
blur_kernel=blur_kernel,
|
340 |
-
demodulate=demodulate,
|
341 |
-
device=device
|
342 |
-
)
|
343 |
-
|
344 |
-
self.noise = NoiseInjection(isconcat)
|
345 |
-
#self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
346 |
-
#self.activate = ScaledLeakyReLU(0.2)
|
347 |
-
feat_multiplier = 2 if isconcat else 1
|
348 |
-
self.activate = FusedLeakyReLU(out_channel*feat_multiplier, device=device)
|
349 |
-
|
350 |
-
def forward(self, input, style, noise=None):
|
351 |
-
out = self.conv(input, style)
|
352 |
-
out = self.noise(out, noise=noise)
|
353 |
-
# out = out + self.bias
|
354 |
-
out = self.activate(out)
|
355 |
-
|
356 |
-
return out
|
357 |
-
|
358 |
-
|
359 |
-
class ToRGB(nn.Module):
|
360 |
-
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1], device='cpu'):
|
361 |
-
super().__init__()
|
362 |
-
|
363 |
-
if upsample:
|
364 |
-
self.upsample = Upsample(blur_kernel, device=device)
|
365 |
-
|
366 |
-
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False, device=device)
|
367 |
-
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
368 |
-
|
369 |
-
def forward(self, input, style, skip=None):
|
370 |
-
out = self.conv(input, style)
|
371 |
-
out = out + self.bias
|
372 |
-
|
373 |
-
if skip is not None:
|
374 |
-
skip = self.upsample(skip)
|
375 |
-
|
376 |
-
out = out + skip
|
377 |
-
|
378 |
-
return out
|
379 |
-
|
380 |
-
class Generator(nn.Module):
|
381 |
-
def __init__(
|
382 |
-
self,
|
383 |
-
size,
|
384 |
-
style_dim,
|
385 |
-
n_mlp,
|
386 |
-
channel_multiplier=2,
|
387 |
-
blur_kernel=[1, 3, 3, 1],
|
388 |
-
lr_mlp=0.01,
|
389 |
-
isconcat=True,
|
390 |
-
narrow=1,
|
391 |
-
device='cpu'
|
392 |
-
):
|
393 |
-
super().__init__()
|
394 |
-
|
395 |
-
self.size = size
|
396 |
-
self.n_mlp = n_mlp
|
397 |
-
self.style_dim = style_dim
|
398 |
-
self.feat_multiplier = 2 if isconcat else 1
|
399 |
-
|
400 |
-
layers = [PixelNorm()]
|
401 |
-
|
402 |
-
for i in range(n_mlp):
|
403 |
-
layers.append(
|
404 |
-
EqualLinear(
|
405 |
-
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu', device=device
|
406 |
-
)
|
407 |
-
)
|
408 |
-
|
409 |
-
self.style = nn.Sequential(*layers)
|
410 |
-
|
411 |
-
self.channels = {
|
412 |
-
4: int(512 * narrow),
|
413 |
-
8: int(512 * narrow),
|
414 |
-
16: int(512 * narrow),
|
415 |
-
32: int(512 * narrow),
|
416 |
-
64: int(256 * channel_multiplier * narrow),
|
417 |
-
128: int(128 * channel_multiplier * narrow),
|
418 |
-
256: int(64 * channel_multiplier * narrow),
|
419 |
-
512: int(32 * channel_multiplier * narrow),
|
420 |
-
1024: int(16 * channel_multiplier * narrow)
|
421 |
-
}
|
422 |
-
|
423 |
-
self.input = ConstantInput(self.channels[4])
|
424 |
-
self.conv1 = StyledConv(
|
425 |
-
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device
|
426 |
-
)
|
427 |
-
self.to_rgb1 = ToRGB(self.channels[4]*self.feat_multiplier, style_dim, upsample=False, device=device)
|
428 |
-
|
429 |
-
self.log_size = int(math.log(size, 2))
|
430 |
-
|
431 |
-
self.convs = nn.ModuleList()
|
432 |
-
self.upsamples = nn.ModuleList()
|
433 |
-
self.to_rgbs = nn.ModuleList()
|
434 |
-
|
435 |
-
in_channel = self.channels[4]
|
436 |
-
|
437 |
-
for i in range(3, self.log_size + 1):
|
438 |
-
out_channel = self.channels[2 ** i]
|
439 |
-
|
440 |
-
self.convs.append(
|
441 |
-
StyledConv(
|
442 |
-
in_channel*self.feat_multiplier,
|
443 |
-
out_channel,
|
444 |
-
3,
|
445 |
-
style_dim,
|
446 |
-
upsample=True,
|
447 |
-
blur_kernel=blur_kernel,
|
448 |
-
isconcat=isconcat,
|
449 |
-
device=device
|
450 |
-
)
|
451 |
-
)
|
452 |
-
|
453 |
-
self.convs.append(
|
454 |
-
StyledConv(
|
455 |
-
out_channel*self.feat_multiplier, out_channel, 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device
|
456 |
-
)
|
457 |
-
)
|
458 |
-
|
459 |
-
self.to_rgbs.append(ToRGB(out_channel*self.feat_multiplier, style_dim, device=device))
|
460 |
-
|
461 |
-
in_channel = out_channel
|
462 |
-
|
463 |
-
self.n_latent = self.log_size * 2 - 2
|
464 |
-
|
465 |
-
def make_noise(self):
|
466 |
-
device = self.input.input.device
|
467 |
-
|
468 |
-
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
469 |
-
|
470 |
-
for i in range(3, self.log_size + 1):
|
471 |
-
for _ in range(2):
|
472 |
-
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
473 |
-
|
474 |
-
return noises
|
475 |
-
|
476 |
-
def mean_latent(self, n_latent):
|
477 |
-
latent_in = torch.randn(
|
478 |
-
n_latent, self.style_dim, device=self.input.input.device
|
479 |
-
)
|
480 |
-
latent = self.style(latent_in).mean(0, keepdim=True)
|
481 |
-
|
482 |
-
return latent
|
483 |
-
|
484 |
-
def get_latent(self, input):
|
485 |
-
return self.style(input)
|
486 |
-
|
487 |
-
def forward(
|
488 |
-
self,
|
489 |
-
styles,
|
490 |
-
return_latents=False,
|
491 |
-
inject_index=None,
|
492 |
-
truncation=1,
|
493 |
-
truncation_latent=None,
|
494 |
-
input_is_latent=False,
|
495 |
-
noise=None,
|
496 |
-
):
|
497 |
-
if not input_is_latent:
|
498 |
-
styles = [self.style(s) for s in styles]
|
499 |
-
|
500 |
-
if noise is None:
|
501 |
-
'''
|
502 |
-
noise = [None] * (2 * (self.log_size - 2) + 1)
|
503 |
-
'''
|
504 |
-
noise = []
|
505 |
-
batch = styles[0].shape[0]
|
506 |
-
for i in range(self.n_mlp + 1):
|
507 |
-
size = 2 ** (i+2)
|
508 |
-
noise.append(torch.randn(batch, self.channels[size], size, size, device=styles[0].device))
|
509 |
-
|
510 |
-
if truncation < 1:
|
511 |
-
style_t = []
|
512 |
-
|
513 |
-
for style in styles:
|
514 |
-
style_t.append(
|
515 |
-
truncation_latent + truncation * (style - truncation_latent)
|
516 |
-
)
|
517 |
-
|
518 |
-
styles = style_t
|
519 |
-
|
520 |
-
if len(styles) < 2:
|
521 |
-
inject_index = self.n_latent
|
522 |
-
|
523 |
-
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
524 |
-
|
525 |
-
else:
|
526 |
-
if inject_index is None:
|
527 |
-
inject_index = random.randint(1, self.n_latent - 1)
|
528 |
-
|
529 |
-
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
530 |
-
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
531 |
-
|
532 |
-
latent = torch.cat([latent, latent2], 1)
|
533 |
-
|
534 |
-
out = self.input(latent)
|
535 |
-
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
536 |
-
|
537 |
-
skip = self.to_rgb1(out, latent[:, 1])
|
538 |
-
|
539 |
-
i = 1
|
540 |
-
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
541 |
-
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
542 |
-
):
|
543 |
-
out = conv1(out, latent[:, i], noise=noise1)
|
544 |
-
out = conv2(out, latent[:, i + 1], noise=noise2)
|
545 |
-
skip = to_rgb(out, latent[:, i + 2], skip)
|
546 |
-
|
547 |
-
i += 2
|
548 |
-
|
549 |
-
image = skip
|
550 |
-
|
551 |
-
if return_latents:
|
552 |
-
return image, latent
|
553 |
-
|
554 |
-
else:
|
555 |
-
return image, None
|
556 |
-
|
557 |
-
class ConvLayer(nn.Sequential):
|
558 |
-
def __init__(
|
559 |
-
self,
|
560 |
-
in_channel,
|
561 |
-
out_channel,
|
562 |
-
kernel_size,
|
563 |
-
downsample=False,
|
564 |
-
blur_kernel=[1, 3, 3, 1],
|
565 |
-
bias=True,
|
566 |
-
activate=True,
|
567 |
-
device='cpu'
|
568 |
-
):
|
569 |
-
layers = []
|
570 |
-
|
571 |
-
if downsample:
|
572 |
-
factor = 2
|
573 |
-
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
574 |
-
pad0 = (p + 1) // 2
|
575 |
-
pad1 = p // 2
|
576 |
-
|
577 |
-
layers.append(Blur(blur_kernel, pad=(pad0, pad1), device=device))
|
578 |
-
|
579 |
-
stride = 2
|
580 |
-
self.padding = 0
|
581 |
-
|
582 |
-
else:
|
583 |
-
stride = 1
|
584 |
-
self.padding = kernel_size // 2
|
585 |
-
|
586 |
-
layers.append(
|
587 |
-
EqualConv2d(
|
588 |
-
in_channel,
|
589 |
-
out_channel,
|
590 |
-
kernel_size,
|
591 |
-
padding=self.padding,
|
592 |
-
stride=stride,
|
593 |
-
bias=bias and not activate,
|
594 |
-
)
|
595 |
-
)
|
596 |
-
|
597 |
-
if activate:
|
598 |
-
if bias:
|
599 |
-
layers.append(FusedLeakyReLU(out_channel, device=device))
|
600 |
-
|
601 |
-
else:
|
602 |
-
layers.append(ScaledLeakyReLU(0.2))
|
603 |
-
|
604 |
-
super().__init__(*layers)
|
605 |
-
|
606 |
-
|
607 |
-
class ResBlock(nn.Module):
|
608 |
-
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], device='cpu'):
|
609 |
-
super().__init__()
|
610 |
-
|
611 |
-
self.conv1 = ConvLayer(in_channel, in_channel, 3, device=device)
|
612 |
-
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, device=device)
|
613 |
-
|
614 |
-
self.skip = ConvLayer(
|
615 |
-
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
616 |
-
)
|
617 |
-
|
618 |
-
def forward(self, input):
|
619 |
-
out = self.conv1(input)
|
620 |
-
out = self.conv2(out)
|
621 |
-
|
622 |
-
skip = self.skip(input)
|
623 |
-
out = (out + skip) / math.sqrt(2)
|
624 |
-
|
625 |
-
return out
|
626 |
-
|
627 |
-
class FullGenerator(nn.Module):
|
628 |
-
def __init__(
|
629 |
-
self,
|
630 |
-
size,
|
631 |
-
style_dim,
|
632 |
-
n_mlp,
|
633 |
-
channel_multiplier=2,
|
634 |
-
blur_kernel=[1, 3, 3, 1],
|
635 |
-
lr_mlp=0.01,
|
636 |
-
isconcat=True,
|
637 |
-
narrow=1,
|
638 |
-
device='cpu'
|
639 |
-
):
|
640 |
-
super().__init__()
|
641 |
-
channels = {
|
642 |
-
4: int(512 * narrow),
|
643 |
-
8: int(512 * narrow),
|
644 |
-
16: int(512 * narrow),
|
645 |
-
32: int(512 * narrow),
|
646 |
-
64: int(256 * channel_multiplier * narrow),
|
647 |
-
128: int(128 * channel_multiplier * narrow),
|
648 |
-
256: int(64 * channel_multiplier * narrow),
|
649 |
-
512: int(32 * channel_multiplier * narrow),
|
650 |
-
1024: int(16 * channel_multiplier * narrow)
|
651 |
-
}
|
652 |
-
|
653 |
-
self.log_size = int(math.log(size, 2))
|
654 |
-
self.generator = Generator(size, style_dim, n_mlp, channel_multiplier=channel_multiplier, blur_kernel=blur_kernel, lr_mlp=lr_mlp, isconcat=isconcat, narrow=narrow, device=device)
|
655 |
-
|
656 |
-
conv = [ConvLayer(3, channels[size], 1, device=device)]
|
657 |
-
self.ecd0 = nn.Sequential(*conv)
|
658 |
-
in_channel = channels[size]
|
659 |
-
|
660 |
-
self.names = ['ecd%d'%i for i in range(self.log_size-1)]
|
661 |
-
for i in range(self.log_size, 2, -1):
|
662 |
-
out_channel = channels[2 ** (i - 1)]
|
663 |
-
#conv = [ResBlock(in_channel, out_channel, blur_kernel)]
|
664 |
-
conv = [ConvLayer(in_channel, out_channel, 3, downsample=True, device=device)]
|
665 |
-
setattr(self, self.names[self.log_size-i+1], nn.Sequential(*conv))
|
666 |
-
in_channel = out_channel
|
667 |
-
self.final_linear = nn.Sequential(EqualLinear(channels[4] * 4 * 4, style_dim, activation='fused_lrelu', device=device))
|
668 |
-
|
669 |
-
def forward(self,
|
670 |
-
inputs,
|
671 |
-
return_latents=False,
|
672 |
-
inject_index=None,
|
673 |
-
truncation=1,
|
674 |
-
truncation_latent=None,
|
675 |
-
input_is_latent=False,
|
676 |
-
):
|
677 |
-
noise = []
|
678 |
-
for i in range(self.log_size-1):
|
679 |
-
ecd = getattr(self, self.names[i])
|
680 |
-
inputs = ecd(inputs)
|
681 |
-
noise.append(inputs)
|
682 |
-
|
683 |
-
inputs = inputs.view(inputs.shape[0], -1)
|
684 |
-
outs = self.final_linear(inputs)
|
685 |
-
noise = list(itertools.chain.from_iterable(itertools.repeat(x, 2) for x in noise))[::-1]
|
686 |
-
outs = self.generator([outs], return_latents, inject_index, truncation, truncation_latent, input_is_latent, noise=noise[1:])
|
687 |
-
return outs
|
688 |
-
|
689 |
-
class Discriminator(nn.Module):
|
690 |
-
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], narrow=1, device='cpu'):
|
691 |
-
super().__init__()
|
692 |
-
|
693 |
-
channels = {
|
694 |
-
4: int(512 * narrow),
|
695 |
-
8: int(512 * narrow),
|
696 |
-
16: int(512 * narrow),
|
697 |
-
32: int(512 * narrow),
|
698 |
-
64: int(256 * channel_multiplier * narrow),
|
699 |
-
128: int(128 * channel_multiplier * narrow),
|
700 |
-
256: int(64 * channel_multiplier * narrow),
|
701 |
-
512: int(32 * channel_multiplier * narrow),
|
702 |
-
1024: int(16 * channel_multiplier * narrow)
|
703 |
-
}
|
704 |
-
|
705 |
-
convs = [ConvLayer(3, channels[size], 1, device=device)]
|
706 |
-
|
707 |
-
log_size = int(math.log(size, 2))
|
708 |
-
|
709 |
-
in_channel = channels[size]
|
710 |
-
|
711 |
-
for i in range(log_size, 2, -1):
|
712 |
-
out_channel = channels[2 ** (i - 1)]
|
713 |
-
|
714 |
-
convs.append(ResBlock(in_channel, out_channel, blur_kernel, device=device))
|
715 |
-
|
716 |
-
in_channel = out_channel
|
717 |
-
|
718 |
-
self.convs = nn.Sequential(*convs)
|
719 |
-
|
720 |
-
self.stddev_group = 4
|
721 |
-
self.stddev_feat = 1
|
722 |
-
|
723 |
-
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3, device=device)
|
724 |
-
self.final_linear = nn.Sequential(
|
725 |
-
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu', device=device),
|
726 |
-
EqualLinear(channels[4], 1),
|
727 |
-
)
|
728 |
-
|
729 |
-
def forward(self, input):
|
730 |
-
out = self.convs(input)
|
731 |
-
|
732 |
-
batch, channel, height, width = out.shape
|
733 |
-
group = min(batch, self.stddev_group)
|
734 |
-
stddev = out.view(
|
735 |
-
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
736 |
-
)
|
737 |
-
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
738 |
-
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
739 |
-
stddev = stddev.repeat(group, 1, height, width)
|
740 |
-
out = torch.cat([out, stddev], 1)
|
741 |
-
|
742 |
-
out = self.final_conv(out)
|
743 |
-
|
744 |
-
out = out.view(batch, -1)
|
745 |
-
out = self.final_linear(out)
|
746 |
-
return out
|
|
|
1 |
+
'''
|
2 |
+
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
|
3 |
+
@author: yangxy (yangtao9009@gmail.com)
|
4 |
+
'''
|
5 |
+
import math
|
6 |
+
import random
|
7 |
+
import functools
|
8 |
+
import operator
|
9 |
+
import itertools
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import functional as F
|
14 |
+
from torch.autograd import Function
|
15 |
+
|
16 |
+
from videoretalking.third_part.GPEN.face_model.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
17 |
+
|
18 |
+
class PixelNorm(nn.Module):
|
19 |
+
def __init__(self):
|
20 |
+
super().__init__()
|
21 |
+
|
22 |
+
def forward(self, input):
|
23 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
24 |
+
|
25 |
+
|
26 |
+
def make_kernel(k):
|
27 |
+
k = torch.tensor(k, dtype=torch.float32)
|
28 |
+
|
29 |
+
if k.ndim == 1:
|
30 |
+
k = k[None, :] * k[:, None]
|
31 |
+
|
32 |
+
k /= k.sum()
|
33 |
+
|
34 |
+
return k
|
35 |
+
|
36 |
+
|
37 |
+
class Upsample(nn.Module):
|
38 |
+
def __init__(self, kernel, factor=2, device='cpu'):
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.factor = factor
|
42 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
43 |
+
self.register_buffer('kernel', kernel)
|
44 |
+
|
45 |
+
p = kernel.shape[0] - factor
|
46 |
+
|
47 |
+
pad0 = (p + 1) // 2 + factor - 1
|
48 |
+
pad1 = p // 2
|
49 |
+
|
50 |
+
self.pad = (pad0, pad1)
|
51 |
+
self.device = device
|
52 |
+
|
53 |
+
def forward(self, input):
|
54 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad, device=self.device)
|
55 |
+
|
56 |
+
return out
|
57 |
+
|
58 |
+
|
59 |
+
class Downsample(nn.Module):
|
60 |
+
def __init__(self, kernel, factor=2, device='cpu'):
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
self.factor = factor
|
64 |
+
kernel = make_kernel(kernel)
|
65 |
+
self.register_buffer('kernel', kernel)
|
66 |
+
|
67 |
+
p = kernel.shape[0] - factor
|
68 |
+
|
69 |
+
pad0 = (p + 1) // 2
|
70 |
+
pad1 = p // 2
|
71 |
+
|
72 |
+
self.pad = (pad0, pad1)
|
73 |
+
self.device = device
|
74 |
+
|
75 |
+
def forward(self, input):
|
76 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad, device=self.device)
|
77 |
+
|
78 |
+
return out
|
79 |
+
|
80 |
+
|
81 |
+
class Blur(nn.Module):
|
82 |
+
def __init__(self, kernel, pad, upsample_factor=1, device='cpu'):
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
kernel = make_kernel(kernel)
|
86 |
+
|
87 |
+
if upsample_factor > 1:
|
88 |
+
kernel = kernel * (upsample_factor ** 2)
|
89 |
+
|
90 |
+
self.register_buffer('kernel', kernel)
|
91 |
+
|
92 |
+
self.pad = pad
|
93 |
+
self.device = device
|
94 |
+
|
95 |
+
def forward(self, input):
|
96 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad, device=self.device)
|
97 |
+
|
98 |
+
return out
|
99 |
+
|
100 |
+
|
101 |
+
class EqualConv2d(nn.Module):
|
102 |
+
def __init__(
|
103 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
104 |
+
):
|
105 |
+
super().__init__()
|
106 |
+
|
107 |
+
self.weight = nn.Parameter(
|
108 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
109 |
+
)
|
110 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
111 |
+
|
112 |
+
self.stride = stride
|
113 |
+
self.padding = padding
|
114 |
+
|
115 |
+
if bias:
|
116 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
117 |
+
|
118 |
+
else:
|
119 |
+
self.bias = None
|
120 |
+
|
121 |
+
def forward(self, input):
|
122 |
+
out = F.conv2d(
|
123 |
+
input,
|
124 |
+
self.weight * self.scale,
|
125 |
+
bias=self.bias,
|
126 |
+
stride=self.stride,
|
127 |
+
padding=self.padding,
|
128 |
+
)
|
129 |
+
|
130 |
+
return out
|
131 |
+
|
132 |
+
def __repr__(self):
|
133 |
+
return (
|
134 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
135 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
class EqualLinear(nn.Module):
|
140 |
+
def __init__(
|
141 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, device='cpu'
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
146 |
+
|
147 |
+
if bias:
|
148 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
149 |
+
|
150 |
+
else:
|
151 |
+
self.bias = None
|
152 |
+
|
153 |
+
self.activation = activation
|
154 |
+
self.device = device
|
155 |
+
|
156 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
157 |
+
self.lr_mul = lr_mul
|
158 |
+
|
159 |
+
def forward(self, input):
|
160 |
+
if self.activation:
|
161 |
+
out = F.linear(input, self.weight * self.scale)
|
162 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul, device=self.device)
|
163 |
+
|
164 |
+
else:
|
165 |
+
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
|
166 |
+
|
167 |
+
return out
|
168 |
+
|
169 |
+
def __repr__(self):
|
170 |
+
return (
|
171 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
class ScaledLeakyReLU(nn.Module):
|
176 |
+
def __init__(self, negative_slope=0.2):
|
177 |
+
super().__init__()
|
178 |
+
|
179 |
+
self.negative_slope = negative_slope
|
180 |
+
|
181 |
+
def forward(self, input):
|
182 |
+
out = F.leaky_relu(input, negative_slope=self.negative_slope)
|
183 |
+
|
184 |
+
return out * math.sqrt(2)
|
185 |
+
|
186 |
+
|
187 |
+
class ModulatedConv2d(nn.Module):
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
in_channel,
|
191 |
+
out_channel,
|
192 |
+
kernel_size,
|
193 |
+
style_dim,
|
194 |
+
demodulate=True,
|
195 |
+
upsample=False,
|
196 |
+
downsample=False,
|
197 |
+
blur_kernel=[1, 3, 3, 1],
|
198 |
+
device='cpu'
|
199 |
+
):
|
200 |
+
super().__init__()
|
201 |
+
|
202 |
+
self.eps = 1e-8
|
203 |
+
self.kernel_size = kernel_size
|
204 |
+
self.in_channel = in_channel
|
205 |
+
self.out_channel = out_channel
|
206 |
+
self.upsample = upsample
|
207 |
+
self.downsample = downsample
|
208 |
+
|
209 |
+
if upsample:
|
210 |
+
factor = 2
|
211 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
212 |
+
pad0 = (p + 1) // 2 + factor - 1
|
213 |
+
pad1 = p // 2 + 1
|
214 |
+
|
215 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor, device=device)
|
216 |
+
|
217 |
+
if downsample:
|
218 |
+
factor = 2
|
219 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
220 |
+
pad0 = (p + 1) // 2
|
221 |
+
pad1 = p // 2
|
222 |
+
|
223 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), device=device)
|
224 |
+
|
225 |
+
fan_in = in_channel * kernel_size ** 2
|
226 |
+
self.scale = 1 / math.sqrt(fan_in)
|
227 |
+
self.padding = kernel_size // 2
|
228 |
+
|
229 |
+
self.weight = nn.Parameter(
|
230 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
231 |
+
)
|
232 |
+
|
233 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
234 |
+
|
235 |
+
self.demodulate = demodulate
|
236 |
+
|
237 |
+
def __repr__(self):
|
238 |
+
return (
|
239 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
240 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
241 |
+
)
|
242 |
+
|
243 |
+
def forward(self, input, style):
|
244 |
+
batch, in_channel, height, width = input.shape
|
245 |
+
|
246 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
247 |
+
weight = self.scale * self.weight * style
|
248 |
+
|
249 |
+
if self.demodulate:
|
250 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
251 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
252 |
+
|
253 |
+
weight = weight.view(
|
254 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
255 |
+
)
|
256 |
+
|
257 |
+
if self.upsample:
|
258 |
+
input = input.view(1, batch * in_channel, height, width)
|
259 |
+
weight = weight.view(
|
260 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
261 |
+
)
|
262 |
+
weight = weight.transpose(1, 2).reshape(
|
263 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
264 |
+
)
|
265 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
266 |
+
_, _, height, width = out.shape
|
267 |
+
out = out.view(batch, self.out_channel, height, width)
|
268 |
+
out = self.blur(out)
|
269 |
+
|
270 |
+
elif self.downsample:
|
271 |
+
input = self.blur(input)
|
272 |
+
_, _, height, width = input.shape
|
273 |
+
input = input.view(1, batch * in_channel, height, width)
|
274 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
275 |
+
_, _, height, width = out.shape
|
276 |
+
out = out.view(batch, self.out_channel, height, width)
|
277 |
+
|
278 |
+
else:
|
279 |
+
input = input.view(1, batch * in_channel, height, width)
|
280 |
+
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
281 |
+
_, _, height, width = out.shape
|
282 |
+
out = out.view(batch, self.out_channel, height, width)
|
283 |
+
|
284 |
+
return out
|
285 |
+
|
286 |
+
|
287 |
+
class NoiseInjection(nn.Module):
|
288 |
+
def __init__(self, isconcat=True):
|
289 |
+
super().__init__()
|
290 |
+
|
291 |
+
self.isconcat = isconcat
|
292 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
293 |
+
|
294 |
+
def forward(self, image, noise=None):
|
295 |
+
if noise is None:
|
296 |
+
batch, _, height, width = image.shape
|
297 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
298 |
+
|
299 |
+
if self.isconcat:
|
300 |
+
return torch.cat((image, self.weight * noise), dim=1)
|
301 |
+
else:
|
302 |
+
return image + self.weight * noise
|
303 |
+
|
304 |
+
|
305 |
+
class ConstantInput(nn.Module):
|
306 |
+
def __init__(self, channel, size=4):
|
307 |
+
super().__init__()
|
308 |
+
|
309 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
310 |
+
|
311 |
+
def forward(self, input):
|
312 |
+
batch = input.shape[0]
|
313 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
314 |
+
|
315 |
+
return out
|
316 |
+
|
317 |
+
|
318 |
+
class StyledConv(nn.Module):
|
319 |
+
def __init__(
|
320 |
+
self,
|
321 |
+
in_channel,
|
322 |
+
out_channel,
|
323 |
+
kernel_size,
|
324 |
+
style_dim,
|
325 |
+
upsample=False,
|
326 |
+
blur_kernel=[1, 3, 3, 1],
|
327 |
+
demodulate=True,
|
328 |
+
isconcat=True,
|
329 |
+
device='cpu'
|
330 |
+
):
|
331 |
+
super().__init__()
|
332 |
+
|
333 |
+
self.conv = ModulatedConv2d(
|
334 |
+
in_channel,
|
335 |
+
out_channel,
|
336 |
+
kernel_size,
|
337 |
+
style_dim,
|
338 |
+
upsample=upsample,
|
339 |
+
blur_kernel=blur_kernel,
|
340 |
+
demodulate=demodulate,
|
341 |
+
device=device
|
342 |
+
)
|
343 |
+
|
344 |
+
self.noise = NoiseInjection(isconcat)
|
345 |
+
#self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
346 |
+
#self.activate = ScaledLeakyReLU(0.2)
|
347 |
+
feat_multiplier = 2 if isconcat else 1
|
348 |
+
self.activate = FusedLeakyReLU(out_channel*feat_multiplier, device=device)
|
349 |
+
|
350 |
+
def forward(self, input, style, noise=None):
|
351 |
+
out = self.conv(input, style)
|
352 |
+
out = self.noise(out, noise=noise)
|
353 |
+
# out = out + self.bias
|
354 |
+
out = self.activate(out)
|
355 |
+
|
356 |
+
return out
|
357 |
+
|
358 |
+
|
359 |
+
class ToRGB(nn.Module):
|
360 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1], device='cpu'):
|
361 |
+
super().__init__()
|
362 |
+
|
363 |
+
if upsample:
|
364 |
+
self.upsample = Upsample(blur_kernel, device=device)
|
365 |
+
|
366 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False, device=device)
|
367 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
368 |
+
|
369 |
+
def forward(self, input, style, skip=None):
|
370 |
+
out = self.conv(input, style)
|
371 |
+
out = out + self.bias
|
372 |
+
|
373 |
+
if skip is not None:
|
374 |
+
skip = self.upsample(skip)
|
375 |
+
|
376 |
+
out = out + skip
|
377 |
+
|
378 |
+
return out
|
379 |
+
|
380 |
+
class Generator(nn.Module):
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
size,
|
384 |
+
style_dim,
|
385 |
+
n_mlp,
|
386 |
+
channel_multiplier=2,
|
387 |
+
blur_kernel=[1, 3, 3, 1],
|
388 |
+
lr_mlp=0.01,
|
389 |
+
isconcat=True,
|
390 |
+
narrow=1,
|
391 |
+
device='cpu'
|
392 |
+
):
|
393 |
+
super().__init__()
|
394 |
+
|
395 |
+
self.size = size
|
396 |
+
self.n_mlp = n_mlp
|
397 |
+
self.style_dim = style_dim
|
398 |
+
self.feat_multiplier = 2 if isconcat else 1
|
399 |
+
|
400 |
+
layers = [PixelNorm()]
|
401 |
+
|
402 |
+
for i in range(n_mlp):
|
403 |
+
layers.append(
|
404 |
+
EqualLinear(
|
405 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu', device=device
|
406 |
+
)
|
407 |
+
)
|
408 |
+
|
409 |
+
self.style = nn.Sequential(*layers)
|
410 |
+
|
411 |
+
self.channels = {
|
412 |
+
4: int(512 * narrow),
|
413 |
+
8: int(512 * narrow),
|
414 |
+
16: int(512 * narrow),
|
415 |
+
32: int(512 * narrow),
|
416 |
+
64: int(256 * channel_multiplier * narrow),
|
417 |
+
128: int(128 * channel_multiplier * narrow),
|
418 |
+
256: int(64 * channel_multiplier * narrow),
|
419 |
+
512: int(32 * channel_multiplier * narrow),
|
420 |
+
1024: int(16 * channel_multiplier * narrow)
|
421 |
+
}
|
422 |
+
|
423 |
+
self.input = ConstantInput(self.channels[4])
|
424 |
+
self.conv1 = StyledConv(
|
425 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device
|
426 |
+
)
|
427 |
+
self.to_rgb1 = ToRGB(self.channels[4]*self.feat_multiplier, style_dim, upsample=False, device=device)
|
428 |
+
|
429 |
+
self.log_size = int(math.log(size, 2))
|
430 |
+
|
431 |
+
self.convs = nn.ModuleList()
|
432 |
+
self.upsamples = nn.ModuleList()
|
433 |
+
self.to_rgbs = nn.ModuleList()
|
434 |
+
|
435 |
+
in_channel = self.channels[4]
|
436 |
+
|
437 |
+
for i in range(3, self.log_size + 1):
|
438 |
+
out_channel = self.channels[2 ** i]
|
439 |
+
|
440 |
+
self.convs.append(
|
441 |
+
StyledConv(
|
442 |
+
in_channel*self.feat_multiplier,
|
443 |
+
out_channel,
|
444 |
+
3,
|
445 |
+
style_dim,
|
446 |
+
upsample=True,
|
447 |
+
blur_kernel=blur_kernel,
|
448 |
+
isconcat=isconcat,
|
449 |
+
device=device
|
450 |
+
)
|
451 |
+
)
|
452 |
+
|
453 |
+
self.convs.append(
|
454 |
+
StyledConv(
|
455 |
+
out_channel*self.feat_multiplier, out_channel, 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device
|
456 |
+
)
|
457 |
+
)
|
458 |
+
|
459 |
+
self.to_rgbs.append(ToRGB(out_channel*self.feat_multiplier, style_dim, device=device))
|
460 |
+
|
461 |
+
in_channel = out_channel
|
462 |
+
|
463 |
+
self.n_latent = self.log_size * 2 - 2
|
464 |
+
|
465 |
+
def make_noise(self):
|
466 |
+
device = self.input.input.device
|
467 |
+
|
468 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
469 |
+
|
470 |
+
for i in range(3, self.log_size + 1):
|
471 |
+
for _ in range(2):
|
472 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
473 |
+
|
474 |
+
return noises
|
475 |
+
|
476 |
+
def mean_latent(self, n_latent):
|
477 |
+
latent_in = torch.randn(
|
478 |
+
n_latent, self.style_dim, device=self.input.input.device
|
479 |
+
)
|
480 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
481 |
+
|
482 |
+
return latent
|
483 |
+
|
484 |
+
def get_latent(self, input):
|
485 |
+
return self.style(input)
|
486 |
+
|
487 |
+
def forward(
|
488 |
+
self,
|
489 |
+
styles,
|
490 |
+
return_latents=False,
|
491 |
+
inject_index=None,
|
492 |
+
truncation=1,
|
493 |
+
truncation_latent=None,
|
494 |
+
input_is_latent=False,
|
495 |
+
noise=None,
|
496 |
+
):
|
497 |
+
if not input_is_latent:
|
498 |
+
styles = [self.style(s) for s in styles]
|
499 |
+
|
500 |
+
if noise is None:
|
501 |
+
'''
|
502 |
+
noise = [None] * (2 * (self.log_size - 2) + 1)
|
503 |
+
'''
|
504 |
+
noise = []
|
505 |
+
batch = styles[0].shape[0]
|
506 |
+
for i in range(self.n_mlp + 1):
|
507 |
+
size = 2 ** (i+2)
|
508 |
+
noise.append(torch.randn(batch, self.channels[size], size, size, device=styles[0].device))
|
509 |
+
|
510 |
+
if truncation < 1:
|
511 |
+
style_t = []
|
512 |
+
|
513 |
+
for style in styles:
|
514 |
+
style_t.append(
|
515 |
+
truncation_latent + truncation * (style - truncation_latent)
|
516 |
+
)
|
517 |
+
|
518 |
+
styles = style_t
|
519 |
+
|
520 |
+
if len(styles) < 2:
|
521 |
+
inject_index = self.n_latent
|
522 |
+
|
523 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
524 |
+
|
525 |
+
else:
|
526 |
+
if inject_index is None:
|
527 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
528 |
+
|
529 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
530 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
531 |
+
|
532 |
+
latent = torch.cat([latent, latent2], 1)
|
533 |
+
|
534 |
+
out = self.input(latent)
|
535 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
536 |
+
|
537 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
538 |
+
|
539 |
+
i = 1
|
540 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
541 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
542 |
+
):
|
543 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
544 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
545 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
546 |
+
|
547 |
+
i += 2
|
548 |
+
|
549 |
+
image = skip
|
550 |
+
|
551 |
+
if return_latents:
|
552 |
+
return image, latent
|
553 |
+
|
554 |
+
else:
|
555 |
+
return image, None
|
556 |
+
|
557 |
+
class ConvLayer(nn.Sequential):
|
558 |
+
def __init__(
|
559 |
+
self,
|
560 |
+
in_channel,
|
561 |
+
out_channel,
|
562 |
+
kernel_size,
|
563 |
+
downsample=False,
|
564 |
+
blur_kernel=[1, 3, 3, 1],
|
565 |
+
bias=True,
|
566 |
+
activate=True,
|
567 |
+
device='cpu'
|
568 |
+
):
|
569 |
+
layers = []
|
570 |
+
|
571 |
+
if downsample:
|
572 |
+
factor = 2
|
573 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
574 |
+
pad0 = (p + 1) // 2
|
575 |
+
pad1 = p // 2
|
576 |
+
|
577 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1), device=device))
|
578 |
+
|
579 |
+
stride = 2
|
580 |
+
self.padding = 0
|
581 |
+
|
582 |
+
else:
|
583 |
+
stride = 1
|
584 |
+
self.padding = kernel_size // 2
|
585 |
+
|
586 |
+
layers.append(
|
587 |
+
EqualConv2d(
|
588 |
+
in_channel,
|
589 |
+
out_channel,
|
590 |
+
kernel_size,
|
591 |
+
padding=self.padding,
|
592 |
+
stride=stride,
|
593 |
+
bias=bias and not activate,
|
594 |
+
)
|
595 |
+
)
|
596 |
+
|
597 |
+
if activate:
|
598 |
+
if bias:
|
599 |
+
layers.append(FusedLeakyReLU(out_channel, device=device))
|
600 |
+
|
601 |
+
else:
|
602 |
+
layers.append(ScaledLeakyReLU(0.2))
|
603 |
+
|
604 |
+
super().__init__(*layers)
|
605 |
+
|
606 |
+
|
607 |
+
class ResBlock(nn.Module):
|
608 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], device='cpu'):
|
609 |
+
super().__init__()
|
610 |
+
|
611 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3, device=device)
|
612 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, device=device)
|
613 |
+
|
614 |
+
self.skip = ConvLayer(
|
615 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
616 |
+
)
|
617 |
+
|
618 |
+
def forward(self, input):
|
619 |
+
out = self.conv1(input)
|
620 |
+
out = self.conv2(out)
|
621 |
+
|
622 |
+
skip = self.skip(input)
|
623 |
+
out = (out + skip) / math.sqrt(2)
|
624 |
+
|
625 |
+
return out
|
626 |
+
|
627 |
+
class FullGenerator(nn.Module):
|
628 |
+
def __init__(
|
629 |
+
self,
|
630 |
+
size,
|
631 |
+
style_dim,
|
632 |
+
n_mlp,
|
633 |
+
channel_multiplier=2,
|
634 |
+
blur_kernel=[1, 3, 3, 1],
|
635 |
+
lr_mlp=0.01,
|
636 |
+
isconcat=True,
|
637 |
+
narrow=1,
|
638 |
+
device='cpu'
|
639 |
+
):
|
640 |
+
super().__init__()
|
641 |
+
channels = {
|
642 |
+
4: int(512 * narrow),
|
643 |
+
8: int(512 * narrow),
|
644 |
+
16: int(512 * narrow),
|
645 |
+
32: int(512 * narrow),
|
646 |
+
64: int(256 * channel_multiplier * narrow),
|
647 |
+
128: int(128 * channel_multiplier * narrow),
|
648 |
+
256: int(64 * channel_multiplier * narrow),
|
649 |
+
512: int(32 * channel_multiplier * narrow),
|
650 |
+
1024: int(16 * channel_multiplier * narrow)
|
651 |
+
}
|
652 |
+
|
653 |
+
self.log_size = int(math.log(size, 2))
|
654 |
+
self.generator = Generator(size, style_dim, n_mlp, channel_multiplier=channel_multiplier, blur_kernel=blur_kernel, lr_mlp=lr_mlp, isconcat=isconcat, narrow=narrow, device=device)
|
655 |
+
|
656 |
+
conv = [ConvLayer(3, channels[size], 1, device=device)]
|
657 |
+
self.ecd0 = nn.Sequential(*conv)
|
658 |
+
in_channel = channels[size]
|
659 |
+
|
660 |
+
self.names = ['ecd%d'%i for i in range(self.log_size-1)]
|
661 |
+
for i in range(self.log_size, 2, -1):
|
662 |
+
out_channel = channels[2 ** (i - 1)]
|
663 |
+
#conv = [ResBlock(in_channel, out_channel, blur_kernel)]
|
664 |
+
conv = [ConvLayer(in_channel, out_channel, 3, downsample=True, device=device)]
|
665 |
+
setattr(self, self.names[self.log_size-i+1], nn.Sequential(*conv))
|
666 |
+
in_channel = out_channel
|
667 |
+
self.final_linear = nn.Sequential(EqualLinear(channels[4] * 4 * 4, style_dim, activation='fused_lrelu', device=device))
|
668 |
+
|
669 |
+
def forward(self,
|
670 |
+
inputs,
|
671 |
+
return_latents=False,
|
672 |
+
inject_index=None,
|
673 |
+
truncation=1,
|
674 |
+
truncation_latent=None,
|
675 |
+
input_is_latent=False,
|
676 |
+
):
|
677 |
+
noise = []
|
678 |
+
for i in range(self.log_size-1):
|
679 |
+
ecd = getattr(self, self.names[i])
|
680 |
+
inputs = ecd(inputs)
|
681 |
+
noise.append(inputs)
|
682 |
+
|
683 |
+
inputs = inputs.view(inputs.shape[0], -1)
|
684 |
+
outs = self.final_linear(inputs)
|
685 |
+
noise = list(itertools.chain.from_iterable(itertools.repeat(x, 2) for x in noise))[::-1]
|
686 |
+
outs = self.generator([outs], return_latents, inject_index, truncation, truncation_latent, input_is_latent, noise=noise[1:])
|
687 |
+
return outs
|
688 |
+
|
689 |
+
class Discriminator(nn.Module):
|
690 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], narrow=1, device='cpu'):
|
691 |
+
super().__init__()
|
692 |
+
|
693 |
+
channels = {
|
694 |
+
4: int(512 * narrow),
|
695 |
+
8: int(512 * narrow),
|
696 |
+
16: int(512 * narrow),
|
697 |
+
32: int(512 * narrow),
|
698 |
+
64: int(256 * channel_multiplier * narrow),
|
699 |
+
128: int(128 * channel_multiplier * narrow),
|
700 |
+
256: int(64 * channel_multiplier * narrow),
|
701 |
+
512: int(32 * channel_multiplier * narrow),
|
702 |
+
1024: int(16 * channel_multiplier * narrow)
|
703 |
+
}
|
704 |
+
|
705 |
+
convs = [ConvLayer(3, channels[size], 1, device=device)]
|
706 |
+
|
707 |
+
log_size = int(math.log(size, 2))
|
708 |
+
|
709 |
+
in_channel = channels[size]
|
710 |
+
|
711 |
+
for i in range(log_size, 2, -1):
|
712 |
+
out_channel = channels[2 ** (i - 1)]
|
713 |
+
|
714 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel, device=device))
|
715 |
+
|
716 |
+
in_channel = out_channel
|
717 |
+
|
718 |
+
self.convs = nn.Sequential(*convs)
|
719 |
+
|
720 |
+
self.stddev_group = 4
|
721 |
+
self.stddev_feat = 1
|
722 |
+
|
723 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3, device=device)
|
724 |
+
self.final_linear = nn.Sequential(
|
725 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu', device=device),
|
726 |
+
EqualLinear(channels[4], 1),
|
727 |
+
)
|
728 |
+
|
729 |
+
def forward(self, input):
|
730 |
+
out = self.convs(input)
|
731 |
+
|
732 |
+
batch, channel, height, width = out.shape
|
733 |
+
group = min(batch, self.stddev_group)
|
734 |
+
stddev = out.view(
|
735 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
736 |
+
)
|
737 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
738 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
739 |
+
stddev = stddev.repeat(group, 1, height, width)
|
740 |
+
out = torch.cat([out, stddev], 1)
|
741 |
+
|
742 |
+
out = self.final_conv(out)
|
743 |
+
|
744 |
+
out = out.view(batch, -1)
|
745 |
+
out = self.final_linear(out)
|
746 |
+
return out
|