Spaces:
Sleeping
Sleeping
Update videoretalking/utils/inference_utils.py
Browse files- videoretalking/utils/inference_utils.py +253 -253
videoretalking/utils/inference_utils.py
CHANGED
@@ -1,254 +1,254 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2, argparse, torch
|
3 |
-
import torchvision.transforms.functional as TF
|
4 |
-
|
5 |
-
from models import load_network, load_DNet
|
6 |
-
from tqdm import tqdm
|
7 |
-
from PIL import Image
|
8 |
-
from scipy.spatial import ConvexHull
|
9 |
-
from third_part import face_detection
|
10 |
-
from third_part.face3d.models import networks
|
11 |
-
|
12 |
-
import warnings
|
13 |
-
warnings.filterwarnings("ignore")
|
14 |
-
|
15 |
-
def options():
|
16 |
-
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
|
17 |
-
|
18 |
-
parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt')
|
19 |
-
parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth')
|
20 |
-
parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth')
|
21 |
-
parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth')
|
22 |
-
parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True)
|
23 |
-
parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True)
|
24 |
-
parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral')
|
25 |
-
parser.add_argument('--outfile', type=str, help='Video path to save result')
|
26 |
-
|
27 |
-
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False)
|
28 |
-
parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least')
|
29 |
-
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4)
|
30 |
-
parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16)
|
31 |
-
parser.add_argument('--img_size', type=int, default=384)
|
32 |
-
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
|
33 |
-
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
|
34 |
-
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
|
35 |
-
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
|
36 |
-
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
|
37 |
-
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
|
38 |
-
parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window')
|
39 |
-
parser.add_argument('--static', default=False, action='store_true')
|
40 |
-
|
41 |
-
|
42 |
-
parser.add_argument('--up_face', default='original')
|
43 |
-
parser.add_argument('--one_shot', action='store_true')
|
44 |
-
parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1')
|
45 |
-
parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results')
|
46 |
-
parser.add_argument('--re_preprocess', action='store_true')
|
47 |
-
|
48 |
-
args = parser.parse_args()
|
49 |
-
return args
|
50 |
-
|
51 |
-
exp_aus_dict = { # AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r.
|
52 |
-
'sad': torch.Tensor([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
53 |
-
'angry':torch.Tensor([[0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
54 |
-
'surprise': torch.Tensor([[0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
55 |
-
}
|
56 |
-
|
57 |
-
def mask_postprocess(mask, thres=20):
|
58 |
-
mask[:thres, :] = 0; mask[-thres:, :] = 0
|
59 |
-
mask[:, :thres] = 0; mask[:, -thres:] = 0
|
60 |
-
mask = cv2.GaussianBlur(mask, (101, 101), 11)
|
61 |
-
mask = cv2.GaussianBlur(mask, (101, 101), 11)
|
62 |
-
return mask.astype(np.float32)
|
63 |
-
|
64 |
-
def trans_image(image):
|
65 |
-
image = TF.resize(
|
66 |
-
image, size=256, interpolation=Image.BICUBIC)
|
67 |
-
image = TF.to_tensor(image)
|
68 |
-
image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
69 |
-
return image
|
70 |
-
|
71 |
-
def obtain_seq_index(index, num_frames):
|
72 |
-
seq = list(range(index-13, index+13))
|
73 |
-
seq = [ min(max(item, 0), num_frames-1) for item in seq ]
|
74 |
-
return seq
|
75 |
-
|
76 |
-
def transform_semantic(semantic, frame_index, crop_norm_ratio=None):
|
77 |
-
index = obtain_seq_index(frame_index, semantic.shape[0])
|
78 |
-
|
79 |
-
coeff_3dmm = semantic[index,...]
|
80 |
-
ex_coeff = coeff_3dmm[:,80:144] #expression # 64
|
81 |
-
angles = coeff_3dmm[:,224:227] #euler angles for pose
|
82 |
-
translation = coeff_3dmm[:,254:257] #translation
|
83 |
-
crop = coeff_3dmm[:,259:262] #crop param
|
84 |
-
|
85 |
-
if crop_norm_ratio:
|
86 |
-
crop[:, -3] = crop[:, -3] * crop_norm_ratio
|
87 |
-
|
88 |
-
coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1)
|
89 |
-
return torch.Tensor(coeff_3dmm).permute(1,0)
|
90 |
-
|
91 |
-
def find_crop_norm_ratio(source_coeff, target_coeffs):
|
92 |
-
alpha = 0.3
|
93 |
-
exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1) # mean different exp
|
94 |
-
angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1) # mean different angle
|
95 |
-
index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff) # find the smallerest index
|
96 |
-
crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3]
|
97 |
-
return crop_norm_ratio
|
98 |
-
|
99 |
-
def get_smoothened_boxes(boxes, T):
|
100 |
-
for i in range(len(boxes)):
|
101 |
-
if i + T > len(boxes):
|
102 |
-
window = boxes[len(boxes) - T:]
|
103 |
-
else:
|
104 |
-
window = boxes[i : i + T]
|
105 |
-
boxes[i] = np.mean(window, axis=0)
|
106 |
-
return boxes
|
107 |
-
|
108 |
-
def face_detect(images, face_det_batch_size, nosmooth, pads, jaw_correction, detector=None):
|
109 |
-
# def face_detect(images, args, jaw_correction=False, detector=None):
|
110 |
-
if detector == None:
|
111 |
-
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
112 |
-
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
113 |
-
flip_input=False, device=device)
|
114 |
-
|
115 |
-
batch_size = face_det_batch_size
|
116 |
-
while 1:
|
117 |
-
predictions = []
|
118 |
-
try:
|
119 |
-
for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'):
|
120 |
-
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
121 |
-
except RuntimeError:
|
122 |
-
if batch_size == 1:
|
123 |
-
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
124 |
-
batch_size //= 2
|
125 |
-
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
126 |
-
continue
|
127 |
-
break
|
128 |
-
|
129 |
-
results = []
|
130 |
-
pady1, pady2, padx1, padx2 = pads if jaw_correction else (0,20,0,0)
|
131 |
-
for rect, image in zip(predictions, images):
|
132 |
-
if rect is None:
|
133 |
-
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
134 |
-
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
135 |
-
|
136 |
-
y1 = max(0, rect[1] - pady1)
|
137 |
-
y2 = min(image.shape[0], rect[3] + pady2)
|
138 |
-
x1 = max(0, rect[0] - padx1)
|
139 |
-
x2 = min(image.shape[1], rect[2] + padx2)
|
140 |
-
results.append([x1, y1, x2, y2])
|
141 |
-
|
142 |
-
boxes = np.array(results)
|
143 |
-
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
|
144 |
-
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
145 |
-
|
146 |
-
del detector
|
147 |
-
torch.cuda.empty_cache()
|
148 |
-
return results
|
149 |
-
|
150 |
-
def _load(checkpoint_path, device):
|
151 |
-
if device == 'cuda':
|
152 |
-
checkpoint = torch.load(checkpoint_path)
|
153 |
-
else:
|
154 |
-
checkpoint = torch.load(checkpoint_path,
|
155 |
-
map_location=lambda storage, loc: storage)
|
156 |
-
return checkpoint
|
157 |
-
|
158 |
-
def split_coeff(coeffs):
|
159 |
-
"""
|
160 |
-
Return:
|
161 |
-
coeffs_dict -- a dict of torch.tensors
|
162 |
-
|
163 |
-
Parameters:
|
164 |
-
coeffs -- torch.tensor, size (B, 256)
|
165 |
-
"""
|
166 |
-
id_coeffs = coeffs[:, :80]
|
167 |
-
exp_coeffs = coeffs[:, 80: 144]
|
168 |
-
tex_coeffs = coeffs[:, 144: 224]
|
169 |
-
angles = coeffs[:, 224: 227]
|
170 |
-
gammas = coeffs[:, 227: 254]
|
171 |
-
translations = coeffs[:, 254:]
|
172 |
-
return {
|
173 |
-
'id': id_coeffs,
|
174 |
-
'exp': exp_coeffs,
|
175 |
-
'tex': tex_coeffs,
|
176 |
-
'angle': angles,
|
177 |
-
'gamma': gammas,
|
178 |
-
'trans': translations
|
179 |
-
}
|
180 |
-
|
181 |
-
def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6):
|
182 |
-
# generate Gaussian pyramid for A,B and mask
|
183 |
-
GA = A.copy()
|
184 |
-
GB = B.copy()
|
185 |
-
GM = m.copy()
|
186 |
-
gpA = [GA]
|
187 |
-
gpB = [GB]
|
188 |
-
gpM = [GM]
|
189 |
-
for i in range(num_levels):
|
190 |
-
GA = cv2.pyrDown(GA)
|
191 |
-
GB = cv2.pyrDown(GB)
|
192 |
-
GM = cv2.pyrDown(GM)
|
193 |
-
gpA.append(np.float32(GA))
|
194 |
-
gpB.append(np.float32(GB))
|
195 |
-
gpM.append(np.float32(GM))
|
196 |
-
|
197 |
-
# generate Laplacian Pyramids for A,B and masks
|
198 |
-
lpA = [gpA[num_levels-1]] # the bottom of the Lap-pyr holds the last (smallest) Gauss level
|
199 |
-
lpB = [gpB[num_levels-1]]
|
200 |
-
gpMr = [gpM[num_levels-1]]
|
201 |
-
for i in range(num_levels-1,0,-1):
|
202 |
-
# Laplacian: subtract upscaled version of lower level from current level
|
203 |
-
# to get the high frequencies
|
204 |
-
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
|
205 |
-
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
|
206 |
-
lpA.append(LA)
|
207 |
-
lpB.append(LB)
|
208 |
-
gpMr.append(gpM[i-1]) # also reverse the masks
|
209 |
-
|
210 |
-
# Now blend images according to mask in each level
|
211 |
-
LS = []
|
212 |
-
for la,lb,gm in zip(lpA,lpB,gpMr):
|
213 |
-
gm = gm[:,:,np.newaxis]
|
214 |
-
ls = la * gm + lb * (1.0 - gm)
|
215 |
-
LS.append(ls)
|
216 |
-
|
217 |
-
# now reconstruct
|
218 |
-
ls_ = LS[0]
|
219 |
-
for i in range(1,num_levels):
|
220 |
-
ls_ = cv2.pyrUp(ls_)
|
221 |
-
ls_ = cv2.add(ls_, LS[i])
|
222 |
-
return ls_
|
223 |
-
|
224 |
-
def load_model(device,DNet_path,LNet_path,ENet_path):
|
225 |
-
D_Net = load_DNet(DNet_path).to(device)
|
226 |
-
model = load_network(LNet_path,ENet_path).to(device)
|
227 |
-
return D_Net, model
|
228 |
-
|
229 |
-
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
|
230 |
-
use_relative_movement=False, use_relative_jacobian=False):
|
231 |
-
if adapt_movement_scale:
|
232 |
-
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
|
233 |
-
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
|
234 |
-
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
|
235 |
-
else:
|
236 |
-
adapt_movement_scale = 1
|
237 |
-
|
238 |
-
kp_new = {k: v for k, v in kp_driving.items()}
|
239 |
-
if use_relative_movement:
|
240 |
-
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
|
241 |
-
kp_value_diff *= adapt_movement_scale
|
242 |
-
kp_new['value'] = kp_value_diff + kp_source['value']
|
243 |
-
|
244 |
-
if use_relative_jacobian:
|
245 |
-
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
|
246 |
-
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
|
247 |
-
return kp_new
|
248 |
-
|
249 |
-
def load_face3d_net(ckpt_path, device):
|
250 |
-
net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
|
251 |
-
checkpoint = torch.load(ckpt_path, map_location=device)
|
252 |
-
net_recon.load_state_dict(checkpoint['net_recon'])
|
253 |
-
net_recon.eval()
|
254 |
return net_recon
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2, argparse, torch
|
3 |
+
import torchvision.transforms.functional as TF
|
4 |
+
|
5 |
+
from videoretalking.models import load_network, load_DNet
|
6 |
+
from tqdm import tqdm
|
7 |
+
from PIL import Image
|
8 |
+
from scipy.spatial import ConvexHull
|
9 |
+
from videoretalking.third_part import face_detection
|
10 |
+
from videoretalking.third_part.face3d.models import networks
|
11 |
+
|
12 |
+
import warnings
|
13 |
+
warnings.filterwarnings("ignore")
|
14 |
+
|
15 |
+
def options():
|
16 |
+
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
|
17 |
+
|
18 |
+
parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt')
|
19 |
+
parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth')
|
20 |
+
parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth')
|
21 |
+
parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth')
|
22 |
+
parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True)
|
23 |
+
parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True)
|
24 |
+
parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral')
|
25 |
+
parser.add_argument('--outfile', type=str, help='Video path to save result')
|
26 |
+
|
27 |
+
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False)
|
28 |
+
parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least')
|
29 |
+
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4)
|
30 |
+
parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16)
|
31 |
+
parser.add_argument('--img_size', type=int, default=384)
|
32 |
+
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
|
33 |
+
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
|
34 |
+
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
|
35 |
+
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
|
36 |
+
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
|
37 |
+
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
|
38 |
+
parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window')
|
39 |
+
parser.add_argument('--static', default=False, action='store_true')
|
40 |
+
|
41 |
+
|
42 |
+
parser.add_argument('--up_face', default='original')
|
43 |
+
parser.add_argument('--one_shot', action='store_true')
|
44 |
+
parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1')
|
45 |
+
parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results')
|
46 |
+
parser.add_argument('--re_preprocess', action='store_true')
|
47 |
+
|
48 |
+
args = parser.parse_args()
|
49 |
+
return args
|
50 |
+
|
51 |
+
exp_aus_dict = { # AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r.
|
52 |
+
'sad': torch.Tensor([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
53 |
+
'angry':torch.Tensor([[0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),
|
54 |
+
'surprise': torch.Tensor([[0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
|
55 |
+
}
|
56 |
+
|
57 |
+
def mask_postprocess(mask, thres=20):
|
58 |
+
mask[:thres, :] = 0; mask[-thres:, :] = 0
|
59 |
+
mask[:, :thres] = 0; mask[:, -thres:] = 0
|
60 |
+
mask = cv2.GaussianBlur(mask, (101, 101), 11)
|
61 |
+
mask = cv2.GaussianBlur(mask, (101, 101), 11)
|
62 |
+
return mask.astype(np.float32)
|
63 |
+
|
64 |
+
def trans_image(image):
|
65 |
+
image = TF.resize(
|
66 |
+
image, size=256, interpolation=Image.BICUBIC)
|
67 |
+
image = TF.to_tensor(image)
|
68 |
+
image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
69 |
+
return image
|
70 |
+
|
71 |
+
def obtain_seq_index(index, num_frames):
|
72 |
+
seq = list(range(index-13, index+13))
|
73 |
+
seq = [ min(max(item, 0), num_frames-1) for item in seq ]
|
74 |
+
return seq
|
75 |
+
|
76 |
+
def transform_semantic(semantic, frame_index, crop_norm_ratio=None):
|
77 |
+
index = obtain_seq_index(frame_index, semantic.shape[0])
|
78 |
+
|
79 |
+
coeff_3dmm = semantic[index,...]
|
80 |
+
ex_coeff = coeff_3dmm[:,80:144] #expression # 64
|
81 |
+
angles = coeff_3dmm[:,224:227] #euler angles for pose
|
82 |
+
translation = coeff_3dmm[:,254:257] #translation
|
83 |
+
crop = coeff_3dmm[:,259:262] #crop param
|
84 |
+
|
85 |
+
if crop_norm_ratio:
|
86 |
+
crop[:, -3] = crop[:, -3] * crop_norm_ratio
|
87 |
+
|
88 |
+
coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1)
|
89 |
+
return torch.Tensor(coeff_3dmm).permute(1,0)
|
90 |
+
|
91 |
+
def find_crop_norm_ratio(source_coeff, target_coeffs):
|
92 |
+
alpha = 0.3
|
93 |
+
exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1) # mean different exp
|
94 |
+
angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1) # mean different angle
|
95 |
+
index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff) # find the smallerest index
|
96 |
+
crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3]
|
97 |
+
return crop_norm_ratio
|
98 |
+
|
99 |
+
def get_smoothened_boxes(boxes, T):
|
100 |
+
for i in range(len(boxes)):
|
101 |
+
if i + T > len(boxes):
|
102 |
+
window = boxes[len(boxes) - T:]
|
103 |
+
else:
|
104 |
+
window = boxes[i : i + T]
|
105 |
+
boxes[i] = np.mean(window, axis=0)
|
106 |
+
return boxes
|
107 |
+
|
108 |
+
def face_detect(images, face_det_batch_size, nosmooth, pads, jaw_correction, detector=None):
|
109 |
+
# def face_detect(images, args, jaw_correction=False, detector=None):
|
110 |
+
if detector == None:
|
111 |
+
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
112 |
+
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
113 |
+
flip_input=False, device=device)
|
114 |
+
|
115 |
+
batch_size = face_det_batch_size
|
116 |
+
while 1:
|
117 |
+
predictions = []
|
118 |
+
try:
|
119 |
+
for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'):
|
120 |
+
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
121 |
+
except RuntimeError:
|
122 |
+
if batch_size == 1:
|
123 |
+
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
124 |
+
batch_size //= 2
|
125 |
+
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
126 |
+
continue
|
127 |
+
break
|
128 |
+
|
129 |
+
results = []
|
130 |
+
pady1, pady2, padx1, padx2 = pads if jaw_correction else (0,20,0,0)
|
131 |
+
for rect, image in zip(predictions, images):
|
132 |
+
if rect is None:
|
133 |
+
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
134 |
+
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
135 |
+
|
136 |
+
y1 = max(0, rect[1] - pady1)
|
137 |
+
y2 = min(image.shape[0], rect[3] + pady2)
|
138 |
+
x1 = max(0, rect[0] - padx1)
|
139 |
+
x2 = min(image.shape[1], rect[2] + padx2)
|
140 |
+
results.append([x1, y1, x2, y2])
|
141 |
+
|
142 |
+
boxes = np.array(results)
|
143 |
+
if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
|
144 |
+
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
145 |
+
|
146 |
+
del detector
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
return results
|
149 |
+
|
150 |
+
def _load(checkpoint_path, device):
|
151 |
+
if device == 'cuda':
|
152 |
+
checkpoint = torch.load(checkpoint_path)
|
153 |
+
else:
|
154 |
+
checkpoint = torch.load(checkpoint_path,
|
155 |
+
map_location=lambda storage, loc: storage)
|
156 |
+
return checkpoint
|
157 |
+
|
158 |
+
def split_coeff(coeffs):
|
159 |
+
"""
|
160 |
+
Return:
|
161 |
+
coeffs_dict -- a dict of torch.tensors
|
162 |
+
|
163 |
+
Parameters:
|
164 |
+
coeffs -- torch.tensor, size (B, 256)
|
165 |
+
"""
|
166 |
+
id_coeffs = coeffs[:, :80]
|
167 |
+
exp_coeffs = coeffs[:, 80: 144]
|
168 |
+
tex_coeffs = coeffs[:, 144: 224]
|
169 |
+
angles = coeffs[:, 224: 227]
|
170 |
+
gammas = coeffs[:, 227: 254]
|
171 |
+
translations = coeffs[:, 254:]
|
172 |
+
return {
|
173 |
+
'id': id_coeffs,
|
174 |
+
'exp': exp_coeffs,
|
175 |
+
'tex': tex_coeffs,
|
176 |
+
'angle': angles,
|
177 |
+
'gamma': gammas,
|
178 |
+
'trans': translations
|
179 |
+
}
|
180 |
+
|
181 |
+
def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6):
|
182 |
+
# generate Gaussian pyramid for A,B and mask
|
183 |
+
GA = A.copy()
|
184 |
+
GB = B.copy()
|
185 |
+
GM = m.copy()
|
186 |
+
gpA = [GA]
|
187 |
+
gpB = [GB]
|
188 |
+
gpM = [GM]
|
189 |
+
for i in range(num_levels):
|
190 |
+
GA = cv2.pyrDown(GA)
|
191 |
+
GB = cv2.pyrDown(GB)
|
192 |
+
GM = cv2.pyrDown(GM)
|
193 |
+
gpA.append(np.float32(GA))
|
194 |
+
gpB.append(np.float32(GB))
|
195 |
+
gpM.append(np.float32(GM))
|
196 |
+
|
197 |
+
# generate Laplacian Pyramids for A,B and masks
|
198 |
+
lpA = [gpA[num_levels-1]] # the bottom of the Lap-pyr holds the last (smallest) Gauss level
|
199 |
+
lpB = [gpB[num_levels-1]]
|
200 |
+
gpMr = [gpM[num_levels-1]]
|
201 |
+
for i in range(num_levels-1,0,-1):
|
202 |
+
# Laplacian: subtract upscaled version of lower level from current level
|
203 |
+
# to get the high frequencies
|
204 |
+
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
|
205 |
+
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
|
206 |
+
lpA.append(LA)
|
207 |
+
lpB.append(LB)
|
208 |
+
gpMr.append(gpM[i-1]) # also reverse the masks
|
209 |
+
|
210 |
+
# Now blend images according to mask in each level
|
211 |
+
LS = []
|
212 |
+
for la,lb,gm in zip(lpA,lpB,gpMr):
|
213 |
+
gm = gm[:,:,np.newaxis]
|
214 |
+
ls = la * gm + lb * (1.0 - gm)
|
215 |
+
LS.append(ls)
|
216 |
+
|
217 |
+
# now reconstruct
|
218 |
+
ls_ = LS[0]
|
219 |
+
for i in range(1,num_levels):
|
220 |
+
ls_ = cv2.pyrUp(ls_)
|
221 |
+
ls_ = cv2.add(ls_, LS[i])
|
222 |
+
return ls_
|
223 |
+
|
224 |
+
def load_model(device,DNet_path,LNet_path,ENet_path):
|
225 |
+
D_Net = load_DNet(DNet_path).to(device)
|
226 |
+
model = load_network(LNet_path,ENet_path).to(device)
|
227 |
+
return D_Net, model
|
228 |
+
|
229 |
+
def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False,
|
230 |
+
use_relative_movement=False, use_relative_jacobian=False):
|
231 |
+
if adapt_movement_scale:
|
232 |
+
source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume
|
233 |
+
driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume
|
234 |
+
adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
|
235 |
+
else:
|
236 |
+
adapt_movement_scale = 1
|
237 |
+
|
238 |
+
kp_new = {k: v for k, v in kp_driving.items()}
|
239 |
+
if use_relative_movement:
|
240 |
+
kp_value_diff = (kp_driving['value'] - kp_driving_initial['value'])
|
241 |
+
kp_value_diff *= adapt_movement_scale
|
242 |
+
kp_new['value'] = kp_value_diff + kp_source['value']
|
243 |
+
|
244 |
+
if use_relative_jacobian:
|
245 |
+
jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian']))
|
246 |
+
kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian'])
|
247 |
+
return kp_new
|
248 |
+
|
249 |
+
def load_face3d_net(ckpt_path, device):
|
250 |
+
net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device)
|
251 |
+
checkpoint = torch.load(ckpt_path, map_location=device)
|
252 |
+
net_recon.load_state_dict(checkpoint['net_recon'])
|
253 |
+
net_recon.eval()
|
254 |
return net_recon
|