Spaces:
Paused
Paused
Update videoretalking/third_part/GPEN/face_model/op/upfirdn2d.py
Browse files
videoretalking/third_part/GPEN/face_model/op/upfirdn2d.py
CHANGED
@@ -1,194 +1,194 @@
|
|
1 |
-
import os
|
2 |
-
import platform
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from torch.autograd import Function
|
7 |
-
from torch.utils.cpp_extension import load, _import_module_from_library
|
8 |
-
|
9 |
-
# if running GPEN without cuda, please comment line 10-18
|
10 |
-
if platform.system() == 'Linux' and torch.cuda.is_available():
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#upfirdn2d_op = _import_module_from_library('upfirdn2d', '/tmp/torch_extensions/upfirdn2d', True)
|
22 |
-
|
23 |
-
class UpFirDn2dBackward(Function):
|
24 |
-
@staticmethod
|
25 |
-
def forward(
|
26 |
-
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
27 |
-
):
|
28 |
-
|
29 |
-
up_x, up_y = up
|
30 |
-
down_x, down_y = down
|
31 |
-
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
32 |
-
|
33 |
-
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
34 |
-
|
35 |
-
grad_input = upfirdn2d_op.upfirdn2d(
|
36 |
-
grad_output,
|
37 |
-
grad_kernel,
|
38 |
-
down_x,
|
39 |
-
down_y,
|
40 |
-
up_x,
|
41 |
-
up_y,
|
42 |
-
g_pad_x0,
|
43 |
-
g_pad_x1,
|
44 |
-
g_pad_y0,
|
45 |
-
g_pad_y1,
|
46 |
-
)
|
47 |
-
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
48 |
-
|
49 |
-
ctx.save_for_backward(kernel)
|
50 |
-
|
51 |
-
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
52 |
-
|
53 |
-
ctx.up_x = up_x
|
54 |
-
ctx.up_y = up_y
|
55 |
-
ctx.down_x = down_x
|
56 |
-
ctx.down_y = down_y
|
57 |
-
ctx.pad_x0 = pad_x0
|
58 |
-
ctx.pad_x1 = pad_x1
|
59 |
-
ctx.pad_y0 = pad_y0
|
60 |
-
ctx.pad_y1 = pad_y1
|
61 |
-
ctx.in_size = in_size
|
62 |
-
ctx.out_size = out_size
|
63 |
-
|
64 |
-
return grad_input
|
65 |
-
|
66 |
-
@staticmethod
|
67 |
-
def backward(ctx, gradgrad_input):
|
68 |
-
kernel, = ctx.saved_tensors
|
69 |
-
|
70 |
-
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
71 |
-
|
72 |
-
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
73 |
-
gradgrad_input,
|
74 |
-
kernel,
|
75 |
-
ctx.up_x,
|
76 |
-
ctx.up_y,
|
77 |
-
ctx.down_x,
|
78 |
-
ctx.down_y,
|
79 |
-
ctx.pad_x0,
|
80 |
-
ctx.pad_x1,
|
81 |
-
ctx.pad_y0,
|
82 |
-
ctx.pad_y1,
|
83 |
-
)
|
84 |
-
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
85 |
-
gradgrad_out = gradgrad_out.view(
|
86 |
-
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
87 |
-
)
|
88 |
-
|
89 |
-
return gradgrad_out, None, None, None, None, None, None, None, None
|
90 |
-
|
91 |
-
|
92 |
-
class UpFirDn2d(Function):
|
93 |
-
@staticmethod
|
94 |
-
def forward(ctx, input, kernel, up, down, pad):
|
95 |
-
up_x, up_y = up
|
96 |
-
down_x, down_y = down
|
97 |
-
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
98 |
-
|
99 |
-
kernel_h, kernel_w = kernel.shape
|
100 |
-
batch, channel, in_h, in_w = input.shape
|
101 |
-
ctx.in_size = input.shape
|
102 |
-
|
103 |
-
input = input.reshape(-1, in_h, in_w, 1)
|
104 |
-
|
105 |
-
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
106 |
-
|
107 |
-
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
108 |
-
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
109 |
-
ctx.out_size = (out_h, out_w)
|
110 |
-
|
111 |
-
ctx.up = (up_x, up_y)
|
112 |
-
ctx.down = (down_x, down_y)
|
113 |
-
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
114 |
-
|
115 |
-
g_pad_x0 = kernel_w - pad_x0 - 1
|
116 |
-
g_pad_y0 = kernel_h - pad_y0 - 1
|
117 |
-
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
118 |
-
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
119 |
-
|
120 |
-
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
121 |
-
|
122 |
-
out = upfirdn2d_op.upfirdn2d(
|
123 |
-
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
124 |
-
)
|
125 |
-
# out = out.view(major, out_h, out_w, minor)
|
126 |
-
out = out.view(-1, channel, out_h, out_w)
|
127 |
-
|
128 |
-
return out
|
129 |
-
|
130 |
-
@staticmethod
|
131 |
-
def backward(ctx, grad_output):
|
132 |
-
kernel, grad_kernel = ctx.saved_tensors
|
133 |
-
|
134 |
-
grad_input = UpFirDn2dBackward.apply(
|
135 |
-
grad_output,
|
136 |
-
kernel,
|
137 |
-
grad_kernel,
|
138 |
-
ctx.up,
|
139 |
-
ctx.down,
|
140 |
-
ctx.pad,
|
141 |
-
ctx.g_pad,
|
142 |
-
ctx.in_size,
|
143 |
-
ctx.out_size,
|
144 |
-
)
|
145 |
-
|
146 |
-
return grad_input, None, None, None, None
|
147 |
-
|
148 |
-
|
149 |
-
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0), device='cpu'):
|
150 |
-
if platform.system() == 'Linux' and torch.cuda.is_available() and device != 'cpu':
|
151 |
-
out = UpFirDn2d.apply(
|
152 |
-
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
153 |
-
)
|
154 |
-
else:
|
155 |
-
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
156 |
-
|
157 |
-
return out
|
158 |
-
|
159 |
-
|
160 |
-
def upfirdn2d_native(
|
161 |
-
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
162 |
-
):
|
163 |
-
input = input.permute(0, 2, 3, 1)
|
164 |
-
_, in_h, in_w, minor = input.shape
|
165 |
-
kernel_h, kernel_w = kernel.shape
|
166 |
-
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
167 |
-
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
168 |
-
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
169 |
-
|
170 |
-
out = F.pad(
|
171 |
-
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
172 |
-
)
|
173 |
-
out = out[
|
174 |
-
:,
|
175 |
-
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
176 |
-
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
177 |
-
:,
|
178 |
-
]
|
179 |
-
|
180 |
-
out = out.permute(0, 3, 1, 2)
|
181 |
-
out = out.reshape(
|
182 |
-
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
183 |
-
)
|
184 |
-
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
185 |
-
out = F.conv2d(out, w)
|
186 |
-
out = out.reshape(
|
187 |
-
-1,
|
188 |
-
minor,
|
189 |
-
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
190 |
-
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
191 |
-
)
|
192 |
-
# out = out.permute(0, 2, 3, 1)
|
193 |
-
return out[:, :, ::down_y, ::down_x]
|
194 |
-
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.autograd import Function
|
7 |
+
from torch.utils.cpp_extension import load, _import_module_from_library
|
8 |
+
|
9 |
+
# # if running GPEN without cuda, please comment line 10-18
|
10 |
+
# if platform.system() == 'Linux' and torch.cuda.is_available():
|
11 |
+
# module_path = os.path.dirname(__file__)
|
12 |
+
# upfirdn2d_op = load(
|
13 |
+
# 'upfirdn2d',
|
14 |
+
# sources=[
|
15 |
+
# os.path.join(module_path, 'upfirdn2d.cpp'),
|
16 |
+
# os.path.join(module_path, 'upfirdn2d_kernel.cu'),
|
17 |
+
# ],
|
18 |
+
# )
|
19 |
+
|
20 |
+
|
21 |
+
#upfirdn2d_op = _import_module_from_library('upfirdn2d', '/tmp/torch_extensions/upfirdn2d', True)
|
22 |
+
|
23 |
+
class UpFirDn2dBackward(Function):
|
24 |
+
@staticmethod
|
25 |
+
def forward(
|
26 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
27 |
+
):
|
28 |
+
|
29 |
+
up_x, up_y = up
|
30 |
+
down_x, down_y = down
|
31 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
32 |
+
|
33 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
34 |
+
|
35 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
36 |
+
grad_output,
|
37 |
+
grad_kernel,
|
38 |
+
down_x,
|
39 |
+
down_y,
|
40 |
+
up_x,
|
41 |
+
up_y,
|
42 |
+
g_pad_x0,
|
43 |
+
g_pad_x1,
|
44 |
+
g_pad_y0,
|
45 |
+
g_pad_y1,
|
46 |
+
)
|
47 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
48 |
+
|
49 |
+
ctx.save_for_backward(kernel)
|
50 |
+
|
51 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
52 |
+
|
53 |
+
ctx.up_x = up_x
|
54 |
+
ctx.up_y = up_y
|
55 |
+
ctx.down_x = down_x
|
56 |
+
ctx.down_y = down_y
|
57 |
+
ctx.pad_x0 = pad_x0
|
58 |
+
ctx.pad_x1 = pad_x1
|
59 |
+
ctx.pad_y0 = pad_y0
|
60 |
+
ctx.pad_y1 = pad_y1
|
61 |
+
ctx.in_size = in_size
|
62 |
+
ctx.out_size = out_size
|
63 |
+
|
64 |
+
return grad_input
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def backward(ctx, gradgrad_input):
|
68 |
+
kernel, = ctx.saved_tensors
|
69 |
+
|
70 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
71 |
+
|
72 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
73 |
+
gradgrad_input,
|
74 |
+
kernel,
|
75 |
+
ctx.up_x,
|
76 |
+
ctx.up_y,
|
77 |
+
ctx.down_x,
|
78 |
+
ctx.down_y,
|
79 |
+
ctx.pad_x0,
|
80 |
+
ctx.pad_x1,
|
81 |
+
ctx.pad_y0,
|
82 |
+
ctx.pad_y1,
|
83 |
+
)
|
84 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
85 |
+
gradgrad_out = gradgrad_out.view(
|
86 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
87 |
+
)
|
88 |
+
|
89 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
90 |
+
|
91 |
+
|
92 |
+
class UpFirDn2d(Function):
|
93 |
+
@staticmethod
|
94 |
+
def forward(ctx, input, kernel, up, down, pad):
|
95 |
+
up_x, up_y = up
|
96 |
+
down_x, down_y = down
|
97 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
98 |
+
|
99 |
+
kernel_h, kernel_w = kernel.shape
|
100 |
+
batch, channel, in_h, in_w = input.shape
|
101 |
+
ctx.in_size = input.shape
|
102 |
+
|
103 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
104 |
+
|
105 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
106 |
+
|
107 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
108 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
109 |
+
ctx.out_size = (out_h, out_w)
|
110 |
+
|
111 |
+
ctx.up = (up_x, up_y)
|
112 |
+
ctx.down = (down_x, down_y)
|
113 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
114 |
+
|
115 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
116 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
117 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
118 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
119 |
+
|
120 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
121 |
+
|
122 |
+
out = upfirdn2d_op.upfirdn2d(
|
123 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
124 |
+
)
|
125 |
+
# out = out.view(major, out_h, out_w, minor)
|
126 |
+
out = out.view(-1, channel, out_h, out_w)
|
127 |
+
|
128 |
+
return out
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def backward(ctx, grad_output):
|
132 |
+
kernel, grad_kernel = ctx.saved_tensors
|
133 |
+
|
134 |
+
grad_input = UpFirDn2dBackward.apply(
|
135 |
+
grad_output,
|
136 |
+
kernel,
|
137 |
+
grad_kernel,
|
138 |
+
ctx.up,
|
139 |
+
ctx.down,
|
140 |
+
ctx.pad,
|
141 |
+
ctx.g_pad,
|
142 |
+
ctx.in_size,
|
143 |
+
ctx.out_size,
|
144 |
+
)
|
145 |
+
|
146 |
+
return grad_input, None, None, None, None
|
147 |
+
|
148 |
+
|
149 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0), device='cpu'):
|
150 |
+
if platform.system() == 'Linux' and torch.cuda.is_available() and device != 'cpu':
|
151 |
+
out = UpFirDn2d.apply(
|
152 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
153 |
+
)
|
154 |
+
else:
|
155 |
+
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
156 |
+
|
157 |
+
return out
|
158 |
+
|
159 |
+
|
160 |
+
def upfirdn2d_native(
|
161 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
162 |
+
):
|
163 |
+
input = input.permute(0, 2, 3, 1)
|
164 |
+
_, in_h, in_w, minor = input.shape
|
165 |
+
kernel_h, kernel_w = kernel.shape
|
166 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
167 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
168 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
169 |
+
|
170 |
+
out = F.pad(
|
171 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
172 |
+
)
|
173 |
+
out = out[
|
174 |
+
:,
|
175 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
176 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
177 |
+
:,
|
178 |
+
]
|
179 |
+
|
180 |
+
out = out.permute(0, 3, 1, 2)
|
181 |
+
out = out.reshape(
|
182 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
183 |
+
)
|
184 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
185 |
+
out = F.conv2d(out, w)
|
186 |
+
out = out.reshape(
|
187 |
+
-1,
|
188 |
+
minor,
|
189 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
190 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
191 |
+
)
|
192 |
+
# out = out.permute(0, 2, 3, 1)
|
193 |
+
return out[:, :, ::down_y, ::down_x]
|
194 |
+
|