Spaces:
Paused
Paused
Update videoretalking/third_part/GPEN/face_detect/retinaface_detection.py
Browse files
videoretalking/third_part/GPEN/face_detect/retinaface_detection.py
CHANGED
@@ -1,193 +1,193 @@
|
|
1 |
-
'''
|
2 |
-
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
|
3 |
-
@author: yangxy (yangtao9009@gmail.com)
|
4 |
-
'''
|
5 |
-
import os
|
6 |
-
import torch
|
7 |
-
import torch.backends.cudnn as cudnn
|
8 |
-
import numpy as np
|
9 |
-
from face_detect.data import cfg_re50
|
10 |
-
from face_detect.layers.functions.prior_box import PriorBox
|
11 |
-
from face_detect.utils.nms.py_cpu_nms import py_cpu_nms
|
12 |
-
import cv2
|
13 |
-
from face_detect.facemodels.retinaface import RetinaFace
|
14 |
-
from face_detect.utils.box_utils import decode, decode_landm
|
15 |
-
import time
|
16 |
-
import torch.nn.functional as F
|
17 |
-
|
18 |
-
|
19 |
-
class RetinaFaceDetection(object):
|
20 |
-
def __init__(self, base_dir, device='cuda', network='RetinaFace-R50'):
|
21 |
-
torch.set_grad_enabled(False)
|
22 |
-
cudnn.benchmark = True
|
23 |
-
self.pretrained_path = os.path.join(base_dir, network+'.pth')
|
24 |
-
self.device = device #torch.cuda.current_device()
|
25 |
-
self.cfg = cfg_re50
|
26 |
-
self.net = RetinaFace(cfg=self.cfg, phase='test')
|
27 |
-
self.load_model()
|
28 |
-
self.net = self.net.to(device)
|
29 |
-
|
30 |
-
self.mean = torch.tensor([[[[104]], [[117]], [[123]]]]).to(device)
|
31 |
-
|
32 |
-
def check_keys(self, pretrained_state_dict):
|
33 |
-
ckpt_keys = set(pretrained_state_dict.keys())
|
34 |
-
model_keys = set(self.net.state_dict().keys())
|
35 |
-
used_pretrained_keys = model_keys & ckpt_keys
|
36 |
-
unused_pretrained_keys = ckpt_keys - model_keys
|
37 |
-
missing_keys = model_keys - ckpt_keys
|
38 |
-
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
|
39 |
-
return True
|
40 |
-
|
41 |
-
def remove_prefix(self, state_dict, prefix):
|
42 |
-
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
|
43 |
-
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
|
44 |
-
return {f(key): value for key, value in state_dict.items()}
|
45 |
-
|
46 |
-
def load_model(self, load_to_cpu=False):
|
47 |
-
#if load_to_cpu:
|
48 |
-
# pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage)
|
49 |
-
#else:
|
50 |
-
# pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage.cuda())
|
51 |
-
pretrained_dict = torch.load(self.pretrained_path, map_location=torch.device('cpu'))
|
52 |
-
if "state_dict" in pretrained_dict.keys():
|
53 |
-
pretrained_dict = self.remove_prefix(pretrained_dict['state_dict'], 'module.')
|
54 |
-
else:
|
55 |
-
pretrained_dict = self.remove_prefix(pretrained_dict, 'module.')
|
56 |
-
self.check_keys(pretrained_dict)
|
57 |
-
self.net.load_state_dict(pretrained_dict, strict=False)
|
58 |
-
self.net.eval()
|
59 |
-
|
60 |
-
def detect(self, img_raw, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False):
|
61 |
-
img = np.float32(img_raw)
|
62 |
-
|
63 |
-
im_height, im_width = img.shape[:2]
|
64 |
-
ss = 1.0
|
65 |
-
# tricky
|
66 |
-
if max(im_height, im_width) > 1500:
|
67 |
-
ss = 1000.0/max(im_height, im_width)
|
68 |
-
img = cv2.resize(img, (0,0), fx=ss, fy=ss)
|
69 |
-
im_height, im_width = img.shape[:2]
|
70 |
-
|
71 |
-
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
|
72 |
-
img -= (104, 117, 123)
|
73 |
-
img = img.transpose(2, 0, 1)
|
74 |
-
img = torch.from_numpy(img).unsqueeze(0)
|
75 |
-
img = img.to(self.device)
|
76 |
-
scale = scale.to(self.device)
|
77 |
-
|
78 |
-
with torch.no_grad():
|
79 |
-
loc, conf, landms = self.net(img) # forward pass
|
80 |
-
|
81 |
-
priorbox = PriorBox(self.cfg, image_size=(im_height, im_width))
|
82 |
-
priors = priorbox.forward()
|
83 |
-
priors = priors.to(self.device)
|
84 |
-
prior_data = priors.data
|
85 |
-
boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance'])
|
86 |
-
boxes = boxes * scale / resize
|
87 |
-
boxes = boxes.cpu().numpy()
|
88 |
-
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
89 |
-
landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance'])
|
90 |
-
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
91 |
-
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
92 |
-
img.shape[3], img.shape[2]])
|
93 |
-
scale1 = scale1.to(self.device)
|
94 |
-
landms = landms * scale1 / resize
|
95 |
-
landms = landms.cpu().numpy()
|
96 |
-
|
97 |
-
# ignore low scores
|
98 |
-
inds = np.where(scores > confidence_threshold)[0]
|
99 |
-
boxes = boxes[inds]
|
100 |
-
landms = landms[inds]
|
101 |
-
scores = scores[inds]
|
102 |
-
|
103 |
-
# keep top-K before NMS
|
104 |
-
order = scores.argsort()[::-1][:top_k]
|
105 |
-
boxes = boxes[order]
|
106 |
-
landms = landms[order]
|
107 |
-
scores = scores[order]
|
108 |
-
|
109 |
-
# do NMS
|
110 |
-
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
111 |
-
keep = py_cpu_nms(dets, nms_threshold)
|
112 |
-
# keep = nms(dets, nms_threshold,force_cpu=args.cpu)
|
113 |
-
dets = dets[keep, :]
|
114 |
-
landms = landms[keep]
|
115 |
-
|
116 |
-
# keep top-K faster NMS
|
117 |
-
dets = dets[:keep_top_k, :]
|
118 |
-
landms = landms[:keep_top_k, :]
|
119 |
-
|
120 |
-
# sort faces(delete)
|
121 |
-
'''
|
122 |
-
fscores = [det[4] for det in dets]
|
123 |
-
sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index
|
124 |
-
tmp = [landms[idx] for idx in sorted_idx]
|
125 |
-
landms = np.asarray(tmp)
|
126 |
-
'''
|
127 |
-
|
128 |
-
landms = landms.reshape((-1, 5, 2))
|
129 |
-
landms = landms.transpose((0, 2, 1))
|
130 |
-
landms = landms.reshape(-1, 10, )
|
131 |
-
return dets/ss, landms/ss
|
132 |
-
|
133 |
-
def detect_tensor(self, img, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False):
|
134 |
-
im_height, im_width = img.shape[-2:]
|
135 |
-
ss = 1000/max(im_height, im_width)
|
136 |
-
img = F.interpolate(img, scale_factor=ss)
|
137 |
-
im_height, im_width = img.shape[-2:]
|
138 |
-
scale = torch.Tensor([im_width, im_height, im_width, im_height]).to(self.device)
|
139 |
-
img -= self.mean
|
140 |
-
|
141 |
-
loc, conf, landms = self.net(img) # forward pass
|
142 |
-
|
143 |
-
priorbox = PriorBox(self.cfg, image_size=(im_height, im_width))
|
144 |
-
priors = priorbox.forward()
|
145 |
-
priors = priors.to(self.device)
|
146 |
-
prior_data = priors.data
|
147 |
-
boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance'])
|
148 |
-
boxes = boxes * scale / resize
|
149 |
-
boxes = boxes.cpu().numpy()
|
150 |
-
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
151 |
-
landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance'])
|
152 |
-
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
153 |
-
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
154 |
-
img.shape[3], img.shape[2]])
|
155 |
-
scale1 = scale1.to(self.device)
|
156 |
-
landms = landms * scale1 / resize
|
157 |
-
landms = landms.cpu().numpy()
|
158 |
-
|
159 |
-
# ignore low scores
|
160 |
-
inds = np.where(scores > confidence_threshold)[0]
|
161 |
-
boxes = boxes[inds]
|
162 |
-
landms = landms[inds]
|
163 |
-
scores = scores[inds]
|
164 |
-
|
165 |
-
# keep top-K before NMS
|
166 |
-
order = scores.argsort()[::-1][:top_k]
|
167 |
-
boxes = boxes[order]
|
168 |
-
landms = landms[order]
|
169 |
-
scores = scores[order]
|
170 |
-
|
171 |
-
# do NMS
|
172 |
-
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
173 |
-
keep = py_cpu_nms(dets, nms_threshold)
|
174 |
-
# keep = nms(dets, nms_threshold,force_cpu=args.cpu)
|
175 |
-
dets = dets[keep, :]
|
176 |
-
landms = landms[keep]
|
177 |
-
|
178 |
-
# keep top-K faster NMS
|
179 |
-
dets = dets[:keep_top_k, :]
|
180 |
-
landms = landms[:keep_top_k, :]
|
181 |
-
|
182 |
-
# sort faces(delete)
|
183 |
-
'''
|
184 |
-
fscores = [det[4] for det in dets]
|
185 |
-
sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index
|
186 |
-
tmp = [landms[idx] for idx in sorted_idx]
|
187 |
-
landms = np.asarray(tmp)
|
188 |
-
'''
|
189 |
-
|
190 |
-
landms = landms.reshape((-1, 5, 2))
|
191 |
-
landms = landms.transpose((0, 2, 1))
|
192 |
-
landms = landms.reshape(-1, 10, )
|
193 |
-
return dets/ss, landms/ss
|
|
|
1 |
+
'''
|
2 |
+
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
|
3 |
+
@author: yangxy (yangtao9009@gmail.com)
|
4 |
+
'''
|
5 |
+
import os
|
6 |
+
import torch
|
7 |
+
import torch.backends.cudnn as cudnn
|
8 |
+
import numpy as np
|
9 |
+
from videoretalking.third_part.GPEN.face_detect.data import cfg_re50
|
10 |
+
from videoretalking.third_part.GPEN.face_detect.layers.functions.prior_box import PriorBox
|
11 |
+
from videoretalking.third_part.GPEN.face_detect.utils.nms.py_cpu_nms import py_cpu_nms
|
12 |
+
import cv2
|
13 |
+
from videoretalking.third_part.GPEN.face_detect.facemodels.retinaface import RetinaFace
|
14 |
+
from videoretalking.third_part.GPEN.face_detect.utils.box_utils import decode, decode_landm
|
15 |
+
import time
|
16 |
+
import torch.nn.functional as F
|
17 |
+
|
18 |
+
|
19 |
+
class RetinaFaceDetection(object):
|
20 |
+
def __init__(self, base_dir, device='cuda', network='RetinaFace-R50'):
|
21 |
+
torch.set_grad_enabled(False)
|
22 |
+
cudnn.benchmark = True
|
23 |
+
self.pretrained_path = os.path.join(base_dir, network+'.pth')
|
24 |
+
self.device = device #torch.cuda.current_device()
|
25 |
+
self.cfg = cfg_re50
|
26 |
+
self.net = RetinaFace(cfg=self.cfg, phase='test')
|
27 |
+
self.load_model()
|
28 |
+
self.net = self.net.to(device)
|
29 |
+
|
30 |
+
self.mean = torch.tensor([[[[104]], [[117]], [[123]]]]).to(device)
|
31 |
+
|
32 |
+
def check_keys(self, pretrained_state_dict):
|
33 |
+
ckpt_keys = set(pretrained_state_dict.keys())
|
34 |
+
model_keys = set(self.net.state_dict().keys())
|
35 |
+
used_pretrained_keys = model_keys & ckpt_keys
|
36 |
+
unused_pretrained_keys = ckpt_keys - model_keys
|
37 |
+
missing_keys = model_keys - ckpt_keys
|
38 |
+
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint'
|
39 |
+
return True
|
40 |
+
|
41 |
+
def remove_prefix(self, state_dict, prefix):
|
42 |
+
''' Old style model is stored with all names of parameters sharing common prefix 'module.' '''
|
43 |
+
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x
|
44 |
+
return {f(key): value for key, value in state_dict.items()}
|
45 |
+
|
46 |
+
def load_model(self, load_to_cpu=False):
|
47 |
+
#if load_to_cpu:
|
48 |
+
# pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage)
|
49 |
+
#else:
|
50 |
+
# pretrained_dict = torch.load(self.pretrained_path, map_location=lambda storage, loc: storage.cuda())
|
51 |
+
pretrained_dict = torch.load(self.pretrained_path, map_location=torch.device('cpu'))
|
52 |
+
if "state_dict" in pretrained_dict.keys():
|
53 |
+
pretrained_dict = self.remove_prefix(pretrained_dict['state_dict'], 'module.')
|
54 |
+
else:
|
55 |
+
pretrained_dict = self.remove_prefix(pretrained_dict, 'module.')
|
56 |
+
self.check_keys(pretrained_dict)
|
57 |
+
self.net.load_state_dict(pretrained_dict, strict=False)
|
58 |
+
self.net.eval()
|
59 |
+
|
60 |
+
def detect(self, img_raw, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False):
|
61 |
+
img = np.float32(img_raw)
|
62 |
+
|
63 |
+
im_height, im_width = img.shape[:2]
|
64 |
+
ss = 1.0
|
65 |
+
# tricky
|
66 |
+
if max(im_height, im_width) > 1500:
|
67 |
+
ss = 1000.0/max(im_height, im_width)
|
68 |
+
img = cv2.resize(img, (0,0), fx=ss, fy=ss)
|
69 |
+
im_height, im_width = img.shape[:2]
|
70 |
+
|
71 |
+
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
|
72 |
+
img -= (104, 117, 123)
|
73 |
+
img = img.transpose(2, 0, 1)
|
74 |
+
img = torch.from_numpy(img).unsqueeze(0)
|
75 |
+
img = img.to(self.device)
|
76 |
+
scale = scale.to(self.device)
|
77 |
+
|
78 |
+
with torch.no_grad():
|
79 |
+
loc, conf, landms = self.net(img) # forward pass
|
80 |
+
|
81 |
+
priorbox = PriorBox(self.cfg, image_size=(im_height, im_width))
|
82 |
+
priors = priorbox.forward()
|
83 |
+
priors = priors.to(self.device)
|
84 |
+
prior_data = priors.data
|
85 |
+
boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance'])
|
86 |
+
boxes = boxes * scale / resize
|
87 |
+
boxes = boxes.cpu().numpy()
|
88 |
+
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
89 |
+
landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance'])
|
90 |
+
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
91 |
+
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
92 |
+
img.shape[3], img.shape[2]])
|
93 |
+
scale1 = scale1.to(self.device)
|
94 |
+
landms = landms * scale1 / resize
|
95 |
+
landms = landms.cpu().numpy()
|
96 |
+
|
97 |
+
# ignore low scores
|
98 |
+
inds = np.where(scores > confidence_threshold)[0]
|
99 |
+
boxes = boxes[inds]
|
100 |
+
landms = landms[inds]
|
101 |
+
scores = scores[inds]
|
102 |
+
|
103 |
+
# keep top-K before NMS
|
104 |
+
order = scores.argsort()[::-1][:top_k]
|
105 |
+
boxes = boxes[order]
|
106 |
+
landms = landms[order]
|
107 |
+
scores = scores[order]
|
108 |
+
|
109 |
+
# do NMS
|
110 |
+
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
111 |
+
keep = py_cpu_nms(dets, nms_threshold)
|
112 |
+
# keep = nms(dets, nms_threshold,force_cpu=args.cpu)
|
113 |
+
dets = dets[keep, :]
|
114 |
+
landms = landms[keep]
|
115 |
+
|
116 |
+
# keep top-K faster NMS
|
117 |
+
dets = dets[:keep_top_k, :]
|
118 |
+
landms = landms[:keep_top_k, :]
|
119 |
+
|
120 |
+
# sort faces(delete)
|
121 |
+
'''
|
122 |
+
fscores = [det[4] for det in dets]
|
123 |
+
sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index
|
124 |
+
tmp = [landms[idx] for idx in sorted_idx]
|
125 |
+
landms = np.asarray(tmp)
|
126 |
+
'''
|
127 |
+
|
128 |
+
landms = landms.reshape((-1, 5, 2))
|
129 |
+
landms = landms.transpose((0, 2, 1))
|
130 |
+
landms = landms.reshape(-1, 10, )
|
131 |
+
return dets/ss, landms/ss
|
132 |
+
|
133 |
+
def detect_tensor(self, img, resize=1, confidence_threshold=0.9, nms_threshold=0.4, top_k=5000, keep_top_k=750, save_image=False):
|
134 |
+
im_height, im_width = img.shape[-2:]
|
135 |
+
ss = 1000/max(im_height, im_width)
|
136 |
+
img = F.interpolate(img, scale_factor=ss)
|
137 |
+
im_height, im_width = img.shape[-2:]
|
138 |
+
scale = torch.Tensor([im_width, im_height, im_width, im_height]).to(self.device)
|
139 |
+
img -= self.mean
|
140 |
+
|
141 |
+
loc, conf, landms = self.net(img) # forward pass
|
142 |
+
|
143 |
+
priorbox = PriorBox(self.cfg, image_size=(im_height, im_width))
|
144 |
+
priors = priorbox.forward()
|
145 |
+
priors = priors.to(self.device)
|
146 |
+
prior_data = priors.data
|
147 |
+
boxes = decode(loc.data.squeeze(0), prior_data, self.cfg['variance'])
|
148 |
+
boxes = boxes * scale / resize
|
149 |
+
boxes = boxes.cpu().numpy()
|
150 |
+
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
|
151 |
+
landms = decode_landm(landms.data.squeeze(0), prior_data, self.cfg['variance'])
|
152 |
+
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
153 |
+
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
|
154 |
+
img.shape[3], img.shape[2]])
|
155 |
+
scale1 = scale1.to(self.device)
|
156 |
+
landms = landms * scale1 / resize
|
157 |
+
landms = landms.cpu().numpy()
|
158 |
+
|
159 |
+
# ignore low scores
|
160 |
+
inds = np.where(scores > confidence_threshold)[0]
|
161 |
+
boxes = boxes[inds]
|
162 |
+
landms = landms[inds]
|
163 |
+
scores = scores[inds]
|
164 |
+
|
165 |
+
# keep top-K before NMS
|
166 |
+
order = scores.argsort()[::-1][:top_k]
|
167 |
+
boxes = boxes[order]
|
168 |
+
landms = landms[order]
|
169 |
+
scores = scores[order]
|
170 |
+
|
171 |
+
# do NMS
|
172 |
+
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
173 |
+
keep = py_cpu_nms(dets, nms_threshold)
|
174 |
+
# keep = nms(dets, nms_threshold,force_cpu=args.cpu)
|
175 |
+
dets = dets[keep, :]
|
176 |
+
landms = landms[keep]
|
177 |
+
|
178 |
+
# keep top-K faster NMS
|
179 |
+
dets = dets[:keep_top_k, :]
|
180 |
+
landms = landms[:keep_top_k, :]
|
181 |
+
|
182 |
+
# sort faces(delete)
|
183 |
+
'''
|
184 |
+
fscores = [det[4] for det in dets]
|
185 |
+
sorted_idx = sorted(range(len(fscores)), key=lambda k:fscores[k], reverse=False) # sort index
|
186 |
+
tmp = [landms[idx] for idx in sorted_idx]
|
187 |
+
landms = np.asarray(tmp)
|
188 |
+
'''
|
189 |
+
|
190 |
+
landms = landms.reshape((-1, 5, 2))
|
191 |
+
landms = landms.transpose((0, 2, 1))
|
192 |
+
landms = landms.reshape(-1, 10, )
|
193 |
+
return dets/ss, landms/ss
|