Spaces:
Sleeping
Sleeping
Update videoretalking/third_part/GPEN/face_parse/face_parsing.py
Browse files
videoretalking/third_part/GPEN/face_parse/face_parsing.py
CHANGED
@@ -1,148 +1,148 @@
|
|
1 |
-
'''
|
2 |
-
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
|
3 |
-
@author: yangxy (yangtao9009@gmail.com)
|
4 |
-
'''
|
5 |
-
import os
|
6 |
-
import cv2
|
7 |
-
import torch
|
8 |
-
import numpy as np
|
9 |
-
from face_parse.parse_model import ParseNet
|
10 |
-
import torch.nn.functional as F
|
11 |
-
|
12 |
-
from face_parse.model import BiSeNet
|
13 |
-
import torchvision.transforms as transforms
|
14 |
-
|
15 |
-
class FaceParse(object):
|
16 |
-
def __init__(self, base_dir='./', model='ParseNet-latest', device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
17 |
-
self.mfile = os.path.join(base_dir, model+'.pth')
|
18 |
-
self.size = 512
|
19 |
-
self.device = device
|
20 |
-
|
21 |
-
'''
|
22 |
-
0: 'background' 1: 'skin' 2: 'nose'
|
23 |
-
3: 'eye_g' 4: 'l_eye' 5: 'r_eye'
|
24 |
-
6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
|
25 |
-
9: 'r_ear' 10: 'mouth' 11: 'u_lip'
|
26 |
-
12: 'l_lip' 13: 'hair' 14: 'hat'
|
27 |
-
15: 'ear_r' 16: 'neck_l' 17: 'neck'
|
28 |
-
18: 'cloth'
|
29 |
-
'''
|
30 |
-
# self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
|
31 |
-
#self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]]
|
32 |
-
# self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
|
33 |
-
self.MASK_COLORMAP = mask_map
|
34 |
-
|
35 |
-
self.load_model()
|
36 |
-
|
37 |
-
def load_model(self):
|
38 |
-
self.faceparse = ParseNet(self.size, self.size, 32, 64, 19, norm_type='bn', relu_type='LeakyReLU', ch_range=[32, 256])
|
39 |
-
self.faceparse.load_state_dict(torch.load(self.mfile, map_location=torch.device('cpu')))
|
40 |
-
self.faceparse.to(self.device)
|
41 |
-
self.faceparse.eval()
|
42 |
-
|
43 |
-
def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
44 |
-
im = cv2.resize(im, (self.size, self.size))
|
45 |
-
imt = self.img2tensor(im)
|
46 |
-
with torch.no_grad():
|
47 |
-
pred_mask, sr_img_tensor = self.faceparse(imt) # (1, 19, 512, 512)
|
48 |
-
mask = self.tenor2mask(pred_mask, masks)
|
49 |
-
|
50 |
-
return mask
|
51 |
-
|
52 |
-
def process_tensor(self, imt):
|
53 |
-
imt = F.interpolate(imt.flip(1)*2-1, (self.size, self.size))
|
54 |
-
pred_mask, sr_img_tensor = self.faceparse(imt)
|
55 |
-
|
56 |
-
mask = pred_mask.argmax(dim=1)
|
57 |
-
for idx, color in enumerate(self.MASK_COLORMAP):
|
58 |
-
mask = torch.where(mask==idx, color, mask)
|
59 |
-
#mask = mask.repeat(3, 1, 1).unsqueeze(0) #.cpu().float().numpy()
|
60 |
-
mask = mask.unsqueeze(0)
|
61 |
-
|
62 |
-
return mask
|
63 |
-
|
64 |
-
def img2tensor(self, img):
|
65 |
-
img = img[..., ::-1] # BGR to RGB
|
66 |
-
img = img / 255. * 2 - 1
|
67 |
-
img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device)
|
68 |
-
return img_tensor.float()
|
69 |
-
|
70 |
-
def tenor2mask(self, tensor, masks):
|
71 |
-
if len(tensor.shape) < 4:
|
72 |
-
tensor = tensor.unsqueeze(0)
|
73 |
-
if tensor.shape[1] > 1:
|
74 |
-
tensor = tensor.argmax(dim=1)
|
75 |
-
|
76 |
-
tensor = tensor.squeeze(1).data.cpu().numpy() # (1, 512, 512)
|
77 |
-
color_maps = []
|
78 |
-
for t in tensor:
|
79 |
-
#tmp_img = np.zeros(tensor.shape[1:] + (3,))
|
80 |
-
tmp_img = np.zeros(tensor.shape[1:])
|
81 |
-
for idx, color in enumerate(masks):
|
82 |
-
tmp_img[t == idx] = color
|
83 |
-
color_maps.append(tmp_img.astype(np.uint8))
|
84 |
-
return color_maps
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
class FaceParse_v2(object):
|
89 |
-
def __init__(self, device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
90 |
-
self.mfile = '/apdcephfs/private_quincheng/Expression/face-parsing.PyTorch/res/cp/79999_iter.pth'
|
91 |
-
self.size = 512
|
92 |
-
self.device = device
|
93 |
-
|
94 |
-
'''
|
95 |
-
0: 'background' 1: 'skin' 2: 'nose'
|
96 |
-
3: 'eye_g' 4: 'l_eye' 5: 'r_eye'
|
97 |
-
6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
|
98 |
-
9: 'r_ear' 10: 'mouth' 11: 'u_lip'
|
99 |
-
12: 'l_lip' 13: 'hair' 14: 'hat'
|
100 |
-
15: 'ear_r' 16: 'neck_l' 17: 'neck'
|
101 |
-
18: 'cloth'
|
102 |
-
'''
|
103 |
-
# self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
|
104 |
-
#self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]]
|
105 |
-
# self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
|
106 |
-
self.MASK_COLORMAP = mask_map
|
107 |
-
self.load_model()
|
108 |
-
self.to_tensor = transforms.Compose([
|
109 |
-
transforms.ToTensor(),
|
110 |
-
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
111 |
-
])
|
112 |
-
|
113 |
-
def load_model(self):
|
114 |
-
self.faceparse = BiSeNet(n_classes=19)
|
115 |
-
self.faceparse.load_state_dict(torch.load(self.mfile))
|
116 |
-
self.faceparse.to(self.device)
|
117 |
-
self.faceparse.eval()
|
118 |
-
|
119 |
-
def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
120 |
-
im = cv2.resize(im[...,::-1], (self.size, self.size))
|
121 |
-
im = self.to_tensor(im)
|
122 |
-
imt = torch.unsqueeze(im, 0).to(self.device)
|
123 |
-
with torch.no_grad():
|
124 |
-
pred_mask = self.faceparse(imt)[0]
|
125 |
-
mask = self.tenor2mask(pred_mask, masks)
|
126 |
-
return mask
|
127 |
-
|
128 |
-
# def img2tensor(self, img):
|
129 |
-
# img = img[..., ::-1] # BGR to RGB
|
130 |
-
# img = img / 255. * 2 - 1
|
131 |
-
# img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device)
|
132 |
-
# return img_tensor.float()
|
133 |
-
|
134 |
-
def tenor2mask(self, tensor, masks):
|
135 |
-
if len(tensor.shape) < 4:
|
136 |
-
tensor = tensor.unsqueeze(0)
|
137 |
-
if tensor.shape[1] > 1:
|
138 |
-
tensor = tensor.argmax(dim=1)
|
139 |
-
|
140 |
-
tensor = tensor.squeeze(1).data.cpu().numpy()
|
141 |
-
color_maps = []
|
142 |
-
for t in tensor:
|
143 |
-
#tmp_img = np.zeros(tensor.shape[1:] + (3,))
|
144 |
-
tmp_img = np.zeros(tensor.shape[1:])
|
145 |
-
for idx, color in enumerate(masks):
|
146 |
-
tmp_img[t == idx] = color
|
147 |
-
color_maps.append(tmp_img.astype(np.uint8))
|
148 |
return color_maps
|
|
|
1 |
+
'''
|
2 |
+
@paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021)
|
3 |
+
@author: yangxy (yangtao9009@gmail.com)
|
4 |
+
'''
|
5 |
+
import os
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from videoretalking.third_part.GPEN.face_parse.parse_model import ParseNet
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
from videoretalking.third_part.GPEN.face_parse.model import BiSeNet
|
13 |
+
import torchvision.transforms as transforms
|
14 |
+
|
15 |
+
class FaceParse(object):
|
16 |
+
def __init__(self, base_dir='./', model='ParseNet-latest', device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
17 |
+
self.mfile = os.path.join(base_dir, model+'.pth')
|
18 |
+
self.size = 512
|
19 |
+
self.device = device
|
20 |
+
|
21 |
+
'''
|
22 |
+
0: 'background' 1: 'skin' 2: 'nose'
|
23 |
+
3: 'eye_g' 4: 'l_eye' 5: 'r_eye'
|
24 |
+
6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
|
25 |
+
9: 'r_ear' 10: 'mouth' 11: 'u_lip'
|
26 |
+
12: 'l_lip' 13: 'hair' 14: 'hat'
|
27 |
+
15: 'ear_r' 16: 'neck_l' 17: 'neck'
|
28 |
+
18: 'cloth'
|
29 |
+
'''
|
30 |
+
# self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
|
31 |
+
#self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]]
|
32 |
+
# self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
|
33 |
+
self.MASK_COLORMAP = mask_map
|
34 |
+
|
35 |
+
self.load_model()
|
36 |
+
|
37 |
+
def load_model(self):
|
38 |
+
self.faceparse = ParseNet(self.size, self.size, 32, 64, 19, norm_type='bn', relu_type='LeakyReLU', ch_range=[32, 256])
|
39 |
+
self.faceparse.load_state_dict(torch.load(self.mfile, map_location=torch.device('cpu')))
|
40 |
+
self.faceparse.to(self.device)
|
41 |
+
self.faceparse.eval()
|
42 |
+
|
43 |
+
def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
44 |
+
im = cv2.resize(im, (self.size, self.size))
|
45 |
+
imt = self.img2tensor(im)
|
46 |
+
with torch.no_grad():
|
47 |
+
pred_mask, sr_img_tensor = self.faceparse(imt) # (1, 19, 512, 512)
|
48 |
+
mask = self.tenor2mask(pred_mask, masks)
|
49 |
+
|
50 |
+
return mask
|
51 |
+
|
52 |
+
def process_tensor(self, imt):
|
53 |
+
imt = F.interpolate(imt.flip(1)*2-1, (self.size, self.size))
|
54 |
+
pred_mask, sr_img_tensor = self.faceparse(imt)
|
55 |
+
|
56 |
+
mask = pred_mask.argmax(dim=1)
|
57 |
+
for idx, color in enumerate(self.MASK_COLORMAP):
|
58 |
+
mask = torch.where(mask==idx, color, mask)
|
59 |
+
#mask = mask.repeat(3, 1, 1).unsqueeze(0) #.cpu().float().numpy()
|
60 |
+
mask = mask.unsqueeze(0)
|
61 |
+
|
62 |
+
return mask
|
63 |
+
|
64 |
+
def img2tensor(self, img):
|
65 |
+
img = img[..., ::-1] # BGR to RGB
|
66 |
+
img = img / 255. * 2 - 1
|
67 |
+
img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device)
|
68 |
+
return img_tensor.float()
|
69 |
+
|
70 |
+
def tenor2mask(self, tensor, masks):
|
71 |
+
if len(tensor.shape) < 4:
|
72 |
+
tensor = tensor.unsqueeze(0)
|
73 |
+
if tensor.shape[1] > 1:
|
74 |
+
tensor = tensor.argmax(dim=1)
|
75 |
+
|
76 |
+
tensor = tensor.squeeze(1).data.cpu().numpy() # (1, 512, 512)
|
77 |
+
color_maps = []
|
78 |
+
for t in tensor:
|
79 |
+
#tmp_img = np.zeros(tensor.shape[1:] + (3,))
|
80 |
+
tmp_img = np.zeros(tensor.shape[1:])
|
81 |
+
for idx, color in enumerate(masks):
|
82 |
+
tmp_img[t == idx] = color
|
83 |
+
color_maps.append(tmp_img.astype(np.uint8))
|
84 |
+
return color_maps
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
class FaceParse_v2(object):
|
89 |
+
def __init__(self, device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
90 |
+
self.mfile = '/apdcephfs/private_quincheng/Expression/face-parsing.PyTorch/res/cp/79999_iter.pth'
|
91 |
+
self.size = 512
|
92 |
+
self.device = device
|
93 |
+
|
94 |
+
'''
|
95 |
+
0: 'background' 1: 'skin' 2: 'nose'
|
96 |
+
3: 'eye_g' 4: 'l_eye' 5: 'r_eye'
|
97 |
+
6: 'l_brow' 7: 'r_brow' 8: 'l_ear'
|
98 |
+
9: 'r_ear' 10: 'mouth' 11: 'u_lip'
|
99 |
+
12: 'l_lip' 13: 'hair' 14: 'hat'
|
100 |
+
15: 'ear_r' 16: 'neck_l' 17: 'neck'
|
101 |
+
18: 'cloth'
|
102 |
+
'''
|
103 |
+
# self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
|
104 |
+
#self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]]
|
105 |
+
# self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
|
106 |
+
self.MASK_COLORMAP = mask_map
|
107 |
+
self.load_model()
|
108 |
+
self.to_tensor = transforms.Compose([
|
109 |
+
transforms.ToTensor(),
|
110 |
+
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
111 |
+
])
|
112 |
+
|
113 |
+
def load_model(self):
|
114 |
+
self.faceparse = BiSeNet(n_classes=19)
|
115 |
+
self.faceparse.load_state_dict(torch.load(self.mfile))
|
116 |
+
self.faceparse.to(self.device)
|
117 |
+
self.faceparse.eval()
|
118 |
+
|
119 |
+
def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]):
|
120 |
+
im = cv2.resize(im[...,::-1], (self.size, self.size))
|
121 |
+
im = self.to_tensor(im)
|
122 |
+
imt = torch.unsqueeze(im, 0).to(self.device)
|
123 |
+
with torch.no_grad():
|
124 |
+
pred_mask = self.faceparse(imt)[0]
|
125 |
+
mask = self.tenor2mask(pred_mask, masks)
|
126 |
+
return mask
|
127 |
+
|
128 |
+
# def img2tensor(self, img):
|
129 |
+
# img = img[..., ::-1] # BGR to RGB
|
130 |
+
# img = img / 255. * 2 - 1
|
131 |
+
# img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device)
|
132 |
+
# return img_tensor.float()
|
133 |
+
|
134 |
+
def tenor2mask(self, tensor, masks):
|
135 |
+
if len(tensor.shape) < 4:
|
136 |
+
tensor = tensor.unsqueeze(0)
|
137 |
+
if tensor.shape[1] > 1:
|
138 |
+
tensor = tensor.argmax(dim=1)
|
139 |
+
|
140 |
+
tensor = tensor.squeeze(1).data.cpu().numpy()
|
141 |
+
color_maps = []
|
142 |
+
for t in tensor:
|
143 |
+
#tmp_img = np.zeros(tensor.shape[1:] + (3,))
|
144 |
+
tmp_img = np.zeros(tensor.shape[1:])
|
145 |
+
for idx, color in enumerate(masks):
|
146 |
+
tmp_img[t == idx] = color
|
147 |
+
color_maps.append(tmp_img.astype(np.uint8))
|
148 |
return color_maps
|