''' @paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) @author: yangxy (yangtao9009@gmail.com) ''' import math import random import functools import operator import itertools import torch from torch import nn from torch.nn import functional as F from torch.autograd import Function from videoretalking.third_part.GPEN.face_model.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d class PixelNorm(nn.Module): def __init__(self): super().__init__() def forward(self, input): return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k class Upsample(nn.Module): def __init__(self, kernel, factor=2, device='cpu'): super().__init__() self.factor = factor kernel = make_kernel(kernel) * (factor ** 2) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 self.pad = (pad0, pad1) self.device = device def forward(self, input): out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad, device=self.device) return out class Downsample(nn.Module): def __init__(self, kernel, factor=2, device='cpu'): super().__init__() self.factor = factor kernel = make_kernel(kernel) self.register_buffer('kernel', kernel) p = kernel.shape[0] - factor pad0 = (p + 1) // 2 pad1 = p // 2 self.pad = (pad0, pad1) self.device = device def forward(self, input): out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad, device=self.device) return out class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1, device='cpu'): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer('kernel', kernel) self.pad = pad self.device = device def forward(self, input): out = upfirdn2d(input, self.kernel, pad=self.pad, device=self.device) return out class EqualConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True ): super().__init__() self.weight = nn.Parameter( torch.randn(out_channel, in_channel, kernel_size, kernel_size) ) self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) self.stride = stride self.padding = padding if bias: self.bias = nn.Parameter(torch.zeros(out_channel)) else: self.bias = None def forward(self, input): out = F.conv2d( input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' ) class EqualLinear(nn.Module): def __init__( self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None, device='cpu' ): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.device = device self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul, device=self.device) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})' ) class ScaledLeakyReLU(nn.Module): def __init__(self, negative_slope=0.2): super().__init__() self.negative_slope = negative_slope def forward(self, input): out = F.leaky_relu(input, negative_slope=self.negative_slope) return out * math.sqrt(2) class ModulatedConv2d(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False, downsample=False, blur_kernel=[1, 3, 3, 1], device='cpu' ): super().__init__() self.eps = 1e-8 self.kernel_size = kernel_size self.in_channel = in_channel self.out_channel = out_channel self.upsample = upsample self.downsample = downsample if upsample: factor = 2 p = (len(blur_kernel) - factor) - (kernel_size - 1) pad0 = (p + 1) // 2 + factor - 1 pad1 = p // 2 + 1 self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor, device=device) if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 self.blur = Blur(blur_kernel, pad=(pad0, pad1), device=device) fan_in = in_channel * kernel_size ** 2 self.scale = 1 / math.sqrt(fan_in) self.padding = kernel_size // 2 self.weight = nn.Parameter( torch.randn(1, out_channel, in_channel, kernel_size, kernel_size) ) self.modulation = EqualLinear(style_dim, in_channel, bias_init=1) self.demodulate = demodulate def __repr__(self): return ( f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, ' f'upsample={self.upsample}, downsample={self.downsample})' ) def forward(self, input, style): batch, in_channel, height, width = input.shape style = self.modulation(style).view(batch, 1, in_channel, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) weight = weight * demod.view(batch, self.out_channel, 1, 1, 1) weight = weight.view( batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size ) if self.upsample: input = input.view(1, batch * in_channel, height, width) weight = weight.view( batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size ) weight = weight.transpose(1, 2).reshape( batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size ) out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) out = self.blur(out) elif self.downsample: input = self.blur(input) _, _, height, width = input.shape input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) else: input = input.view(1, batch * in_channel, height, width) out = F.conv2d(input, weight, padding=self.padding, groups=batch) _, _, height, width = out.shape out = out.view(batch, self.out_channel, height, width) return out class NoiseInjection(nn.Module): def __init__(self, isconcat=True): super().__init__() self.isconcat = isconcat self.weight = nn.Parameter(torch.zeros(1)) def forward(self, image, noise=None): if noise is None: batch, _, height, width = image.shape noise = image.new_empty(batch, 1, height, width).normal_() if self.isconcat: return torch.cat((image, self.weight * noise), dim=1) else: return image + self.weight * noise class ConstantInput(nn.Module): def __init__(self, channel, size=4): super().__init__() self.input = nn.Parameter(torch.randn(1, channel, size, size)) def forward(self, input): batch = input.shape[0] out = self.input.repeat(batch, 1, 1, 1) return out class StyledConv(nn.Module): def __init__( self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1], demodulate=True, isconcat=True, device='cpu' ): super().__init__() self.conv = ModulatedConv2d( in_channel, out_channel, kernel_size, style_dim, upsample=upsample, blur_kernel=blur_kernel, demodulate=demodulate, device=device ) self.noise = NoiseInjection(isconcat) #self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1)) #self.activate = ScaledLeakyReLU(0.2) feat_multiplier = 2 if isconcat else 1 self.activate = FusedLeakyReLU(out_channel*feat_multiplier, device=device) def forward(self, input, style, noise=None): out = self.conv(input, style) out = self.noise(out, noise=noise) # out = out + self.bias out = self.activate(out) return out class ToRGB(nn.Module): def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1], device='cpu'): super().__init__() if upsample: self.upsample = Upsample(blur_kernel, device=device) self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False, device=device) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, input, style, skip=None): out = self.conv(input, style) out = out + self.bias if skip is not None: skip = self.upsample(skip) out = out + skip return out class Generator(nn.Module): def __init__( self, size, style_dim, n_mlp, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, isconcat=True, narrow=1, device='cpu' ): super().__init__() self.size = size self.n_mlp = n_mlp self.style_dim = style_dim self.feat_multiplier = 2 if isconcat else 1 layers = [PixelNorm()] for i in range(n_mlp): layers.append( EqualLinear( style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu', device=device ) ) self.style = nn.Sequential(*layers) self.channels = { 4: int(512 * narrow), 8: int(512 * narrow), 16: int(512 * narrow), 32: int(512 * narrow), 64: int(256 * channel_multiplier * narrow), 128: int(128 * channel_multiplier * narrow), 256: int(64 * channel_multiplier * narrow), 512: int(32 * channel_multiplier * narrow), 1024: int(16 * channel_multiplier * narrow) } self.input = ConstantInput(self.channels[4]) self.conv1 = StyledConv( self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device ) self.to_rgb1 = ToRGB(self.channels[4]*self.feat_multiplier, style_dim, upsample=False, device=device) self.log_size = int(math.log(size, 2)) self.convs = nn.ModuleList() self.upsamples = nn.ModuleList() self.to_rgbs = nn.ModuleList() in_channel = self.channels[4] for i in range(3, self.log_size + 1): out_channel = self.channels[2 ** i] self.convs.append( StyledConv( in_channel*self.feat_multiplier, out_channel, 3, style_dim, upsample=True, blur_kernel=blur_kernel, isconcat=isconcat, device=device ) ) self.convs.append( StyledConv( out_channel*self.feat_multiplier, out_channel, 3, style_dim, blur_kernel=blur_kernel, isconcat=isconcat, device=device ) ) self.to_rgbs.append(ToRGB(out_channel*self.feat_multiplier, style_dim, device=device)) in_channel = out_channel self.n_latent = self.log_size * 2 - 2 def make_noise(self): device = self.input.input.device noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)] for i in range(3, self.log_size + 1): for _ in range(2): noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device)) return noises def mean_latent(self, n_latent): latent_in = torch.randn( n_latent, self.style_dim, device=self.input.input.device ) latent = self.style(latent_in).mean(0, keepdim=True) return latent def get_latent(self, input): return self.style(input) def forward( self, styles, return_latents=False, inject_index=None, truncation=1, truncation_latent=None, input_is_latent=False, noise=None, ): if not input_is_latent: styles = [self.style(s) for s in styles] if noise is None: ''' noise = [None] * (2 * (self.log_size - 2) + 1) ''' noise = [] batch = styles[0].shape[0] for i in range(self.n_mlp + 1): size = 2 ** (i+2) noise.append(torch.randn(batch, self.channels[size], size, size, device=styles[0].device)) if truncation < 1: style_t = [] for style in styles: style_t.append( truncation_latent + truncation * (style - truncation_latent) ) styles = style_t if len(styles) < 2: inject_index = self.n_latent latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) else: if inject_index is None: inject_index = random.randint(1, self.n_latent - 1) latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1) latent = torch.cat([latent, latent2], 1) out = self.input(latent) out = self.conv1(out, latent[:, 0], noise=noise[0]) skip = self.to_rgb1(out, latent[:, 1]) i = 1 for conv1, conv2, noise1, noise2, to_rgb in zip( self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs ): out = conv1(out, latent[:, i], noise=noise1) out = conv2(out, latent[:, i + 1], noise=noise2) skip = to_rgb(out, latent[:, i + 2], skip) i += 2 image = skip if return_latents: return image, latent else: return image, None class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, device='cpu' ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Blur(blur_kernel, pad=(pad0, pad1), device=device)) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append( EqualConv2d( in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate, ) ) if activate: if bias: layers.append(FusedLeakyReLU(out_channel, device=device)) else: layers.append(ScaledLeakyReLU(0.2)) super().__init__(*layers) class ResBlock(nn.Module): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1], device='cpu'): super().__init__() self.conv1 = ConvLayer(in_channel, in_channel, 3, device=device) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True, device=device) self.skip = ConvLayer( in_channel, out_channel, 1, downsample=True, activate=False, bias=False ) def forward(self, input): out = self.conv1(input) out = self.conv2(out) skip = self.skip(input) out = (out + skip) / math.sqrt(2) return out class FullGenerator(nn.Module): def __init__( self, size, style_dim, n_mlp, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], lr_mlp=0.01, isconcat=True, narrow=1, device='cpu' ): super().__init__() channels = { 4: int(512 * narrow), 8: int(512 * narrow), 16: int(512 * narrow), 32: int(512 * narrow), 64: int(256 * channel_multiplier * narrow), 128: int(128 * channel_multiplier * narrow), 256: int(64 * channel_multiplier * narrow), 512: int(32 * channel_multiplier * narrow), 1024: int(16 * channel_multiplier * narrow) } self.log_size = int(math.log(size, 2)) self.generator = Generator(size, style_dim, n_mlp, channel_multiplier=channel_multiplier, blur_kernel=blur_kernel, lr_mlp=lr_mlp, isconcat=isconcat, narrow=narrow, device=device) conv = [ConvLayer(3, channels[size], 1, device=device)] self.ecd0 = nn.Sequential(*conv) in_channel = channels[size] self.names = ['ecd%d'%i for i in range(self.log_size-1)] for i in range(self.log_size, 2, -1): out_channel = channels[2 ** (i - 1)] #conv = [ResBlock(in_channel, out_channel, blur_kernel)] conv = [ConvLayer(in_channel, out_channel, 3, downsample=True, device=device)] setattr(self, self.names[self.log_size-i+1], nn.Sequential(*conv)) in_channel = out_channel self.final_linear = nn.Sequential(EqualLinear(channels[4] * 4 * 4, style_dim, activation='fused_lrelu', device=device)) def forward(self, inputs, return_latents=False, inject_index=None, truncation=1, truncation_latent=None, input_is_latent=False, ): noise = [] for i in range(self.log_size-1): ecd = getattr(self, self.names[i]) inputs = ecd(inputs) noise.append(inputs) inputs = inputs.view(inputs.shape[0], -1) outs = self.final_linear(inputs) noise = list(itertools.chain.from_iterable(itertools.repeat(x, 2) for x in noise))[::-1] outs = self.generator([outs], return_latents, inject_index, truncation, truncation_latent, input_is_latent, noise=noise[1:]) return outs class Discriminator(nn.Module): def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], narrow=1, device='cpu'): super().__init__() channels = { 4: int(512 * narrow), 8: int(512 * narrow), 16: int(512 * narrow), 32: int(512 * narrow), 64: int(256 * channel_multiplier * narrow), 128: int(128 * channel_multiplier * narrow), 256: int(64 * channel_multiplier * narrow), 512: int(32 * channel_multiplier * narrow), 1024: int(16 * channel_multiplier * narrow) } convs = [ConvLayer(3, channels[size], 1, device=device)] log_size = int(math.log(size, 2)) in_channel = channels[size] for i in range(log_size, 2, -1): out_channel = channels[2 ** (i - 1)] convs.append(ResBlock(in_channel, out_channel, blur_kernel, device=device)) in_channel = out_channel self.convs = nn.Sequential(*convs) self.stddev_group = 4 self.stddev_feat = 1 self.final_conv = ConvLayer(in_channel + 1, channels[4], 3, device=device) self.final_linear = nn.Sequential( EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu', device=device), EqualLinear(channels[4], 1), ) def forward(self, input): out = self.convs(input) batch, channel, height, width = out.shape group = min(batch, self.stddev_group) stddev = out.view( group, -1, self.stddev_feat, channel // self.stddev_feat, height, width ) stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) stddev = stddev.repeat(group, 1, height, width) out = torch.cat([out, stddev], 1) out = self.final_conv(out) out = out.view(batch, -1) out = self.final_linear(out) return out