''' @paper: GAN Prior Embedded Network for Blind Face Restoration in the Wild (CVPR2021) @author: yangxy (yangtao9009@gmail.com) ''' import os import cv2 import torch import numpy as np from videoretalking.third_part.GPEN.face_parse.parse_model import ParseNet import torch.nn.functional as F from videoretalking.third_part.GPEN.face_parse.model import BiSeNet import torchvision.transforms as transforms class FaceParse(object): def __init__(self, base_dir='./', model='ParseNet-latest', device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]): self.mfile = os.path.join(base_dir, model+'.pth') self.size = 512 self.device = device ''' 0: 'background' 1: 'skin' 2: 'nose' 3: 'eye_g' 4: 'l_eye' 5: 'r_eye' 6: 'l_brow' 7: 'r_brow' 8: 'l_ear' 9: 'r_ear' 10: 'mouth' 11: 'u_lip' 12: 'l_lip' 13: 'hair' 14: 'hat' 15: 'ear_r' 16: 'neck_l' 17: 'neck' 18: 'cloth' ''' # self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] #self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]] # self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0] self.MASK_COLORMAP = mask_map self.load_model() def load_model(self): self.faceparse = ParseNet(self.size, self.size, 32, 64, 19, norm_type='bn', relu_type='LeakyReLU', ch_range=[32, 256]) self.faceparse.load_state_dict(torch.load(self.mfile, map_location=torch.device('cpu'))) self.faceparse.to(self.device) self.faceparse.eval() def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]): im = cv2.resize(im, (self.size, self.size)) imt = self.img2tensor(im) with torch.no_grad(): pred_mask, sr_img_tensor = self.faceparse(imt) # (1, 19, 512, 512) mask = self.tenor2mask(pred_mask, masks) return mask def process_tensor(self, imt): imt = F.interpolate(imt.flip(1)*2-1, (self.size, self.size)) pred_mask, sr_img_tensor = self.faceparse(imt) mask = pred_mask.argmax(dim=1) for idx, color in enumerate(self.MASK_COLORMAP): mask = torch.where(mask==idx, color, mask) #mask = mask.repeat(3, 1, 1).unsqueeze(0) #.cpu().float().numpy() mask = mask.unsqueeze(0) return mask def img2tensor(self, img): img = img[..., ::-1] # BGR to RGB img = img / 255. * 2 - 1 img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device) return img_tensor.float() def tenor2mask(self, tensor, masks): if len(tensor.shape) < 4: tensor = tensor.unsqueeze(0) if tensor.shape[1] > 1: tensor = tensor.argmax(dim=1) tensor = tensor.squeeze(1).data.cpu().numpy() # (1, 512, 512) color_maps = [] for t in tensor: #tmp_img = np.zeros(tensor.shape[1:] + (3,)) tmp_img = np.zeros(tensor.shape[1:]) for idx, color in enumerate(masks): tmp_img[t == idx] = color color_maps.append(tmp_img.astype(np.uint8)) return color_maps class FaceParse_v2(object): def __init__(self, device='cuda', mask_map = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]): self.mfile = '/apdcephfs/private_quincheng/Expression/face-parsing.PyTorch/res/cp/79999_iter.pth' self.size = 512 self.device = device ''' 0: 'background' 1: 'skin' 2: 'nose' 3: 'eye_g' 4: 'l_eye' 5: 'r_eye' 6: 'l_brow' 7: 'r_brow' 8: 'l_ear' 9: 'r_ear' 10: 'mouth' 11: 'u_lip' 12: 'l_lip' 13: 'hair' 14: 'hat' 15: 'ear_r' 16: 'neck_l' 17: 'neck' 18: 'cloth' ''' # self.MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] #self.#MASK_COLORMAP = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]] = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255], [255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204], [255, 51, 153], [0, 204, 204], [0, 51, 0], [0, 0, 0], [0, 0, 0]] # self.MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0] self.MASK_COLORMAP = mask_map self.load_model() self.to_tensor = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ]) def load_model(self): self.faceparse = BiSeNet(n_classes=19) self.faceparse.load_state_dict(torch.load(self.mfile)) self.faceparse.to(self.device) self.faceparse.eval() def process(self, im, masks=[0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0]): im = cv2.resize(im[...,::-1], (self.size, self.size)) im = self.to_tensor(im) imt = torch.unsqueeze(im, 0).to(self.device) with torch.no_grad(): pred_mask = self.faceparse(imt)[0] mask = self.tenor2mask(pred_mask, masks) return mask # def img2tensor(self, img): # img = img[..., ::-1] # BGR to RGB # img = img / 255. * 2 - 1 # img_tensor = torch.from_numpy(img.transpose(2, 0, 1)).unsqueeze(0).to(self.device) # return img_tensor.float() def tenor2mask(self, tensor, masks): if len(tensor.shape) < 4: tensor = tensor.unsqueeze(0) if tensor.shape[1] > 1: tensor = tensor.argmax(dim=1) tensor = tensor.squeeze(1).data.cpu().numpy() color_maps = [] for t in tensor: #tmp_img = np.zeros(tensor.shape[1:] + (3,)) tmp_img = np.zeros(tensor.shape[1:]) for idx, color in enumerate(masks): tmp_img[t == idx] = color color_maps.append(tmp_img.astype(np.uint8)) return color_maps