import os import cv2 import time import glob import argparse import scipy import numpy as np from PIL import Image from tqdm import tqdm from itertools import cycle from torch.multiprocessing import Pool, Process, set_start_method """ brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) author: lzhbrian (https://lzhbrian.me) date: 2020.1.5 note: code is heavily borrowed from https://github.com/NVlabs/ffhq-dataset http://dlib.net/face_landmark_detection.py.html requirements: apt install cmake conda install Pillow numpy scipy pip install dlib # download face landmark model from: # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 """ import numpy as np from PIL import Image import dlib class Croper: def __init__(self, path_of_lm): # download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 self.predictor = dlib.shape_predictor(path_of_lm) def get_landmark(self, img_np): """get landmark with dlib :return: np.array shape=(68, 2) """ detector = dlib.get_frontal_face_detector() dets = detector(img_np, 1) # print("Number of faces detected: {}".format(len(dets))) # for k, d in enumerate(dets): if len(dets) == 0: return None d = dets[0] # Get the landmarks/parts for the face in box d. shape = self.predictor(img_np, d) # print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) t = list(shape.parts()) a = [] for tt in t: a.append([tt.x, tt.y]) lm = np.array(a) # lm is a shape=(68,2) np.array return lm def align_face(self, img, lm, output_size=1024): """ :param filepath: str :return: PIL Image """ lm_chin = lm[0: 17] # left-right lm_eyebrow_left = lm[17: 22] # left-right lm_eyebrow_right = lm[22: 27] # left-right lm_nose = lm[27: 31] # top-down lm_nostrils = lm[31: 36] # top-down lm_eye_left = lm[36: 42] # left-clockwise lm_eye_right = lm[42: 48] # left-clockwise lm_mouth_outer = lm[48: 60] # left-clockwise lm_mouth_inner = lm[60: 68] # left-clockwise # Calculate auxiliary vectors. eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Choose oriented crop rectangle. x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference x /= np.hypot(*x) # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化 x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) # 双眼差和眼嘴差,选较大的作为基准尺度 y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点 qsize = np.hypot(*x) * 2 # 定义四边形的大小(边长),为基准尺度的2倍 # Shrink. # 如果计算出的四边形太大了,就按比例缩小它 shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, Image.ANTIALIAS) quad /= shrink qsize /= shrink else: rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1])))) # Crop. border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: # img = img.crop(crop) quad -= crop[0:2] # Pad. pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) # if enable_padding and max(pad) > border - 4: # pad = np.maximum(pad, int(np.rint(qsize * 0.3))) # img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') # h, w, _ = img.shape # y, x, _ = np.ogrid[:h, :w, :1] # mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), # 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) # blur = qsize * 0.02 # img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) # img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) # img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') # quad += pad[:2] # Transform. quad = (quad + 0.5).flatten() lx = max(min(quad[0], quad[2]), 0) ly = max(min(quad[1], quad[7]), 0) rx = min(max(quad[4], quad[6]), img.size[0]) ry = min(max(quad[3], quad[5]), img.size[0]) # img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), # Image.BILINEAR) # if output_size < transform_size: # img = img.resize((output_size, output_size), Image.ANTIALIAS) # Save aligned image. return rsize, crop, [lx, ly, rx, ry] # def crop(self, img_np_list): # for _i in range(len(img_np_list)): # img_np = img_np_list[_i] # lm = self.get_landmark(img_np) # if lm is None: # return None # crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=512) # clx, cly, crx, cry = crop # lx, ly, rx, ry = quad # lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) # _inp = img_np_list[_i] # _inp = _inp[cly:cry, clx:crx] # _inp = _inp[ly:ry, lx:rx] # img_np_list[_i] = _inp # return img_np_list def crop(self, img_np_list, still=False, xsize=512): # first frame for all video img_np = img_np_list[0] lm = self.get_landmark(img_np) if lm is None: raise 'can not detect the landmark from source image' rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) clx, cly, crx, cry = crop lx, ly, rx, ry = quad lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) for _i in range(len(img_np_list)): _inp = img_np_list[_i] _inp = cv2.resize(_inp, (rsize[0], rsize[1])) _inp = _inp[cly:cry, clx:crx] # cv2.imwrite('test1.jpg', _inp) if not still: _inp = _inp[ly:ry, lx:rx] # cv2.imwrite('test2.jpg', _inp) img_np_list[_i] = _inp return img_np_list, crop, quad def read_video(filename, uplimit=100): frames = [] cap = cv2.VideoCapture(filename) cnt = 0 while cap.isOpened(): ret, frame = cap.read() if ret: frame = cv2.resize(frame, (512, 512)) frames.append(frame) else: break cnt += 1 if cnt >= uplimit: break cap.release() assert len(frames) > 0, f'{filename}: video with no frames!' return frames def create_video(video_name, frames, fps=25, video_format='.mp4', resize_ratio=1): # video_name = os.path.dirname(image_folder) + video_format # img_list = glob.glob1(image_folder, 'frame*') # img_list.sort() # frame = cv2.imread(os.path.join(image_folder, img_list[0])) # frame = cv2.resize(frame, (0, 0), fx=resize_ratio, fy=resize_ratio) # height, width, layers = frames[0].shape height, width, layers = 512, 512, 3 if video_format == '.mp4': fourcc = cv2.VideoWriter_fourcc(*'mp4v') elif video_format == '.avi': fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter(video_name, fourcc, fps, (width, height)) for _frame in frames: _frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR) video.write(_frame) def create_images(video_name, frames): height, width, layers = 512, 512, 3 images_dir = video_name.split('.')[0] os.makedirs(images_dir, exist_ok=True) for i, _frame in enumerate(frames): _frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR) _frame_path = os.path.join(images_dir, str(i)+'.jpg') cv2.imwrite(_frame_path, _frame) def run(data): filename, opt, device = data os.environ['CUDA_VISIBLE_DEVICES'] = device croper = Croper() frames = read_video(filename, uplimit=opt.uplimit) name = filename.split('/')[-1] # .split('.')[0] name = os.path.join(opt.output_dir, name) frames = croper.crop(frames) if frames is None: print(f'{name}: detect no face. should removed') return # create_video(name, frames) create_images(name, frames) def get_data_path(video_dir): eg_video_files = ['/apdcephfs/share_1290939/quincheng/datasets/HDTF/backup_fps25/WDA_KatieHill_000.mp4'] # filenames = list() # VIDEO_EXTENSIONS_LOWERCASE = {'mp4'} # VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE}) # extensions = VIDEO_EXTENSIONS # for ext in extensions: # filenames = sorted(glob.glob(f'{opt.input_dir}/**/*.{ext}')) # print('Total number of videos:', len(filenames)) return eg_video_files def get_wra_data_path(video_dir): if opt.option == 'video': videos_path = sorted(glob.glob(f'{video_dir}/*.mp4')) elif opt.option == 'image': videos_path = sorted(glob.glob(f'{video_dir}/*/')) else: raise NotImplementedError print('Example videos: ', videos_path[:2]) return videos_path if __name__ == '__main__': set_start_method('spawn') parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--input_dir', type=str, help='the folder of the input files') parser.add_argument('--output_dir', type=str, help='the folder of the output files') parser.add_argument('--device_ids', type=str, default='0,1') parser.add_argument('--workers', type=int, default=8) parser.add_argument('--uplimit', type=int, default=500) parser.add_argument('--option', type=str, default='video') root = '/apdcephfs/share_1290939/quincheng/datasets/HDTF' cmd = f'--input_dir {root}/backup_fps25_first20s_sync/ ' \ f'--output_dir {root}/crop512_stylegan_firstframe_sync/ ' \ '--device_ids 0 ' \ '--workers 8 ' \ '--option video ' \ '--uplimit 500 ' opt = parser.parse_args(cmd.split()) # filenames = get_data_path(opt.input_dir) filenames = get_wra_data_path(opt.input_dir) os.makedirs(opt.output_dir, exist_ok=True) print(f'Video numbers: {len(filenames)}') pool = Pool(opt.workers) args_list = cycle([opt]) device_ids = opt.device_ids.split(",") device_ids = cycle(device_ids) for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))): None