import numpy as np import cv2, argparse, torch import torchvision.transforms.functional as TF from videoretalking.models import load_network, load_DNet from tqdm import tqdm from PIL import Image from scipy.spatial import ConvexHull from videoretalking.third_part import face_detection from videoretalking.third_part.face3d.models import networks import warnings warnings.filterwarnings("ignore") def options(): parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models') parser.add_argument('--DNet_path', type=str, default='checkpoints/DNet.pt') parser.add_argument('--LNet_path', type=str, default='checkpoints/LNet.pth') parser.add_argument('--ENet_path', type=str, default='checkpoints/ENet.pth') parser.add_argument('--face3d_net_path', type=str, default='checkpoints/face3d_pretrain_epoch_20.pth') parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', required=True) parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', required=True) parser.add_argument('--exp_img', type=str, help='Expression template. neutral, smile or image path', default='neutral') parser.add_argument('--outfile', type=str, help='Video path to save result') parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False) parser.add_argument('--pads', nargs='+', type=int, default=[0, 20, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least') parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=4) parser.add_argument('--LNet_batch_size', type=int, help='Batch size for LNet', default=16) parser.add_argument('--img_size', type=int, default=384) parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' 'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width') parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.' 'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).') parser.add_argument('--nosmooth', default=False, action='store_true', help='Prevent smoothing face detections over a short temporal window') parser.add_argument('--static', default=False, action='store_true') parser.add_argument('--up_face', default='original') parser.add_argument('--one_shot', action='store_true') parser.add_argument('--without_rl1', default=False, action='store_true', help='Do not use the relative l1') parser.add_argument('--tmp_dir', type=str, default='temp', help='Folder to save tmp results') parser.add_argument('--re_preprocess', action='store_true') args = parser.parse_args() return args exp_aus_dict = { # AU01_r, AU02_r, AU04_r, AU05_r, AU06_r, AU07_r, AU09_r, AU10_r, AU12_r, AU14_r, AU15_r, AU17_r, AU20_r, AU23_r, AU25_r, AU26_r, AU45_r. 'sad': torch.Tensor([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'angry':torch.Tensor([[0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'surprise': torch.Tensor([[0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) } def mask_postprocess(mask, thres=20): mask[:thres, :] = 0; mask[-thres:, :] = 0 mask[:, :thres] = 0; mask[:, -thres:] = 0 mask = cv2.GaussianBlur(mask, (101, 101), 11) mask = cv2.GaussianBlur(mask, (101, 101), 11) return mask.astype(np.float32) def trans_image(image): image = TF.resize( image, size=256, interpolation=Image.BICUBIC) image = TF.to_tensor(image) image = TF.normalize(image, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) return image def obtain_seq_index(index, num_frames): seq = list(range(index-13, index+13)) seq = [ min(max(item, 0), num_frames-1) for item in seq ] return seq def transform_semantic(semantic, frame_index, crop_norm_ratio=None): index = obtain_seq_index(frame_index, semantic.shape[0]) coeff_3dmm = semantic[index,...] ex_coeff = coeff_3dmm[:,80:144] #expression # 64 angles = coeff_3dmm[:,224:227] #euler angles for pose translation = coeff_3dmm[:,254:257] #translation crop = coeff_3dmm[:,259:262] #crop param if crop_norm_ratio: crop[:, -3] = crop[:, -3] * crop_norm_ratio coeff_3dmm = np.concatenate([ex_coeff, angles, translation, crop], 1) return torch.Tensor(coeff_3dmm).permute(1,0) def find_crop_norm_ratio(source_coeff, target_coeffs): alpha = 0.3 exp_diff = np.mean(np.abs(target_coeffs[:,80:144] - source_coeff[:,80:144]), 1) # mean different exp angle_diff = np.mean(np.abs(target_coeffs[:,224:227] - source_coeff[:,224:227]), 1) # mean different angle index = np.argmin(alpha*exp_diff + (1-alpha)*angle_diff) # find the smallerest index crop_norm_ratio = source_coeff[:,-3] / target_coeffs[index:index+1, -3] return crop_norm_ratio def get_smoothened_boxes(boxes, T): for i in range(len(boxes)): if i + T > len(boxes): window = boxes[len(boxes) - T:] else: window = boxes[i : i + T] boxes[i] = np.mean(window, axis=0) return boxes def face_detect(images, face_det_batch_size, nosmooth, pads, jaw_correction, detector=None): # def face_detect(images, args, jaw_correction=False, detector=None): if detector == None: device = 'cuda:0' if torch.cuda.is_available() else 'cpu' detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device=device) batch_size = face_det_batch_size while 1: predictions = [] try: for i in tqdm(range(0, len(images), batch_size),desc='FaceDet:'): predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) except RuntimeError: if batch_size == 1: raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument') batch_size //= 2 print('Recovering from OOM error; New batch size: {}'.format(batch_size)) continue break results = [] pady1, pady2, padx1, padx2 = pads if jaw_correction else (0,20,0,0) for rect, image in zip(predictions, images): if rect is None: cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') y1 = max(0, rect[1] - pady1) y2 = min(image.shape[0], rect[3] + pady2) x1 = max(0, rect[0] - padx1) x2 = min(image.shape[1], rect[2] + padx2) results.append([x1, y1, x2, y2]) boxes = np.array(results) if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5) results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] del detector torch.cuda.empty_cache() return results def _load(checkpoint_path, device): if device == 'cuda': checkpoint = torch.load(checkpoint_path) else: checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) return checkpoint def split_coeff(coeffs): """ Return: coeffs_dict -- a dict of torch.tensors Parameters: coeffs -- torch.tensor, size (B, 256) """ id_coeffs = coeffs[:, :80] exp_coeffs = coeffs[:, 80: 144] tex_coeffs = coeffs[:, 144: 224] angles = coeffs[:, 224: 227] gammas = coeffs[:, 227: 254] translations = coeffs[:, 254:] return { 'id': id_coeffs, 'exp': exp_coeffs, 'tex': tex_coeffs, 'angle': angles, 'gamma': gammas, 'trans': translations } def Laplacian_Pyramid_Blending_with_mask(A, B, m, num_levels = 6): # generate Gaussian pyramid for A,B and mask GA = A.copy() GB = B.copy() GM = m.copy() gpA = [GA] gpB = [GB] gpM = [GM] for i in range(num_levels): GA = cv2.pyrDown(GA) GB = cv2.pyrDown(GB) GM = cv2.pyrDown(GM) gpA.append(np.float32(GA)) gpB.append(np.float32(GB)) gpM.append(np.float32(GM)) # generate Laplacian Pyramids for A,B and masks lpA = [gpA[num_levels-1]] # the bottom of the Lap-pyr holds the last (smallest) Gauss level lpB = [gpB[num_levels-1]] gpMr = [gpM[num_levels-1]] for i in range(num_levels-1,0,-1): # Laplacian: subtract upscaled version of lower level from current level # to get the high frequencies LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i])) LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i])) lpA.append(LA) lpB.append(LB) gpMr.append(gpM[i-1]) # also reverse the masks # Now blend images according to mask in each level LS = [] for la,lb,gm in zip(lpA,lpB,gpMr): gm = gm[:,:,np.newaxis] ls = la * gm + lb * (1.0 - gm) LS.append(ls) # now reconstruct ls_ = LS[0] for i in range(1,num_levels): ls_ = cv2.pyrUp(ls_) ls_ = cv2.add(ls_, LS[i]) return ls_ def load_model(device,DNet_path,LNet_path,ENet_path): D_Net = load_DNet(DNet_path).to(device) model = load_network(LNet_path,ENet_path).to(device) return D_Net, model def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False, use_relative_movement=False, use_relative_jacobian=False): if adapt_movement_scale: source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) else: adapt_movement_scale = 1 kp_new = {k: v for k, v in kp_driving.items()} if use_relative_movement: kp_value_diff = (kp_driving['value'] - kp_driving_initial['value']) kp_value_diff *= adapt_movement_scale kp_new['value'] = kp_value_diff + kp_source['value'] if use_relative_jacobian: jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian'])) kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian']) return kp_new def load_face3d_net(ckpt_path, device): net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device) checkpoint = torch.load(ckpt_path, map_location=device) net_recon.load_state_dict(checkpoint['net_recon']) net_recon.eval() return net_recon