File size: 4,965 Bytes
8ed5ec4
 
 
 
 
 
 
 
 
 
a2e7059
8ed5ec4
6231256
8202a71
8ed5ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dd6d2b
905330c
8ed5ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7148ee7
8ed5ec4
 
 
 
 
 
905330c
6dd6d2b
 
8ed5ec4
905330c
6dd6d2b
 
8ed5ec4
 
 
 
 
905330c
8ed5ec4
 
 
 
 
 
 
 
7148ee7
687f9e7
6dd6d2b
 
09ec527
6dd6d2b
8ed5ec4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from peft import PeftModel
import transformers
import gradio as gr

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")

BASE_MODEL = "daryl149/llama-2-7b-chat-hf"
LORA_WEIGHTS = "Sparticle/llama-2-7b-chat-japanese-lora"

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""

if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)


def evaluate(
    instruction,
    input=None,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):
    if instruction == '' or instruction == None:
        return 'Instruction not found. Please enter your instruction.\nInstructionを入力してください。'
    prompt = generate_prompt(instruction, input)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Response:")[1].strip().replace('</s>', '')


g = gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="Instruction", placeholder="例1:日本語から英語に翻訳してください。\n\
例2:このテキストを要約してください。\n\
例3:英語から日本語に翻訳してください。"
        ),
        gr.components.Textbox(lines=2, label="Input", placeholder="例1:日本語のテキスト\n\
例2:日本語の長いテキスト\n\
例3:英語のテキスト"),
        gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        gr.components.Slider(
            minimum=1, maximum=1000, step=1, value=128, label="Max tokens"
        ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="Llama2_7b_chat_Japanese_Lora",
    description="Llama-2-7b-chat-Japanese-LoRA is a multi-purpose large language model for Japanese text.\n\
This model is presented by the joint effort of Sparticle Inc. and A. I. Hakusan Inc.\n\
Llama-2-7b-chat-Japanese-LoRAは日本語テキストのための多目的大規模言語モデルです。\n\
このモデルは日本語を話せます。日本語で指示を入力することができます。\n\
このモデルは、Sparticle株式会社と株式会社白山人工知能の共同開発により発表されました。",
)
g.queue(concurrency_count=1)
g.launch()