Spaces:
Runtime error
Runtime error
Spidartist
commited on
Commit
•
a030099
1
Parent(s):
237ec65
new files
Browse files- app.py +120 -0
- model.py +274 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import pathlib
|
4 |
+
import tarfile
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
from model import AppModel
|
9 |
+
|
10 |
+
DESCRIPTION = '''# ViTPose
|
11 |
+
This is an unofficial demo for [https://github.com/ViTAE-Transformer/ViTPose](https://github.com/ViTAE-Transformer/ViTPose).
|
12 |
+
Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose)
|
13 |
+
'''
|
14 |
+
|
15 |
+
|
16 |
+
def set_example_video(example: list) -> dict:
|
17 |
+
return gr.Video.update(value=example[0])
|
18 |
+
|
19 |
+
|
20 |
+
def extract_tar() -> None:
|
21 |
+
if pathlib.Path('mmdet_configs/configs').exists():
|
22 |
+
return
|
23 |
+
with tarfile.open('mmdet_configs/configs.tar') as f:
|
24 |
+
f.extractall('mmdet_configs')
|
25 |
+
|
26 |
+
|
27 |
+
extract_tar()
|
28 |
+
|
29 |
+
model = AppModel()
|
30 |
+
|
31 |
+
with gr.Blocks(css='style.css') as demo:
|
32 |
+
gr.Markdown(DESCRIPTION)
|
33 |
+
|
34 |
+
with gr.Row():
|
35 |
+
with gr.Column():
|
36 |
+
input_video = gr.Video(label='Input Video',
|
37 |
+
format='mp4',
|
38 |
+
elem_id='input_video')
|
39 |
+
detector_name = gr.Dropdown(list(
|
40 |
+
model.det_model.MODEL_DICT.keys()),
|
41 |
+
value=model.det_model.model_name,
|
42 |
+
label='Detector')
|
43 |
+
pose_model_name = gr.Dropdown(list(
|
44 |
+
model.pose_model.MODEL_DICT.keys()),
|
45 |
+
value=model.pose_model.model_name,
|
46 |
+
label='Pose Model')
|
47 |
+
det_score_threshold = gr.Slider(0,
|
48 |
+
1,
|
49 |
+
step=0.05,
|
50 |
+
value=0.5,
|
51 |
+
label='Box Score Threshold')
|
52 |
+
max_num_frames = gr.Slider(1,
|
53 |
+
300,
|
54 |
+
step=1,
|
55 |
+
value=60,
|
56 |
+
label='Maximum Number of Frames')
|
57 |
+
predict_button = gr.Button(value='Predict')
|
58 |
+
pose_preds = gr.Variable()
|
59 |
+
|
60 |
+
paths = sorted(pathlib.Path('videos').rglob('*.mp4'))
|
61 |
+
example_videos = gr.Dataset(components=[input_video],
|
62 |
+
samples=[[path.as_posix()]
|
63 |
+
for path in paths])
|
64 |
+
|
65 |
+
with gr.Column():
|
66 |
+
result = gr.Video(label='Result', format='mp4', elem_id='result')
|
67 |
+
vis_kpt_score_threshold = gr.Slider(
|
68 |
+
0,
|
69 |
+
1,
|
70 |
+
step=0.05,
|
71 |
+
value=0.3,
|
72 |
+
label='Visualization Score Threshold')
|
73 |
+
vis_dot_radius = gr.Slider(1,
|
74 |
+
10,
|
75 |
+
step=1,
|
76 |
+
value=4,
|
77 |
+
label='Dot Radius')
|
78 |
+
vis_line_thickness = gr.Slider(1,
|
79 |
+
10,
|
80 |
+
step=1,
|
81 |
+
value=2,
|
82 |
+
label='Line Thickness')
|
83 |
+
redraw_button = gr.Button(value='Redraw')
|
84 |
+
|
85 |
+
detector_name.change(fn=model.det_model.set_model,
|
86 |
+
inputs=detector_name,
|
87 |
+
outputs=None)
|
88 |
+
pose_model_name.change(fn=model.pose_model.set_model,
|
89 |
+
inputs=pose_model_name,
|
90 |
+
outputs=None)
|
91 |
+
predict_button.click(fn=model.run,
|
92 |
+
inputs=[
|
93 |
+
input_video,
|
94 |
+
detector_name,
|
95 |
+
pose_model_name,
|
96 |
+
det_score_threshold,
|
97 |
+
max_num_frames,
|
98 |
+
vis_kpt_score_threshold,
|
99 |
+
vis_dot_radius,
|
100 |
+
vis_line_thickness,
|
101 |
+
],
|
102 |
+
outputs=[
|
103 |
+
result,
|
104 |
+
pose_preds,
|
105 |
+
])
|
106 |
+
redraw_button.click(fn=model.visualize_pose_results,
|
107 |
+
inputs=[
|
108 |
+
input_video,
|
109 |
+
pose_preds,
|
110 |
+
vis_kpt_score_threshold,
|
111 |
+
vis_dot_radius,
|
112 |
+
vis_line_thickness,
|
113 |
+
],
|
114 |
+
outputs=result)
|
115 |
+
|
116 |
+
example_videos.click(fn=set_example_video,
|
117 |
+
inputs=example_videos,
|
118 |
+
outputs=input_video)
|
119 |
+
|
120 |
+
demo.queue().launch(show_api=False)
|
model.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import shlex
|
5 |
+
import subprocess
|
6 |
+
import sys
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
if os.getenv('SYSTEM') == 'spaces':
|
10 |
+
import mim
|
11 |
+
|
12 |
+
mim.uninstall('mmcv-full', confirm_yes=True)
|
13 |
+
mim.install('mmcv-full==1.5.0', is_yes=True)
|
14 |
+
|
15 |
+
subprocess.call(shlex.split('pip uninstall -y opencv-python'))
|
16 |
+
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless'))
|
17 |
+
subprocess.call(
|
18 |
+
shlex.split('pip install opencv-python-headless==4.5.5.64'))
|
19 |
+
|
20 |
+
import cv2
|
21 |
+
import huggingface_hub
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
|
26 |
+
sys.path.insert(0, 'ViTPose/')
|
27 |
+
|
28 |
+
from mmdet.apis import inference_detector, init_detector
|
29 |
+
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
30 |
+
process_mmdet_results, vis_pose_result)
|
31 |
+
|
32 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
33 |
+
|
34 |
+
|
35 |
+
class DetModel:
|
36 |
+
MODEL_DICT = {
|
37 |
+
'YOLOX-tiny': {
|
38 |
+
'config':
|
39 |
+
'mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py',
|
40 |
+
'model':
|
41 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth',
|
42 |
+
},
|
43 |
+
'YOLOX-s': {
|
44 |
+
'config':
|
45 |
+
'mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py',
|
46 |
+
'model':
|
47 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth',
|
48 |
+
},
|
49 |
+
'YOLOX-l': {
|
50 |
+
'config':
|
51 |
+
'mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py',
|
52 |
+
'model':
|
53 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
|
54 |
+
},
|
55 |
+
'YOLOX-x': {
|
56 |
+
'config':
|
57 |
+
'mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py',
|
58 |
+
'model':
|
59 |
+
'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth',
|
60 |
+
},
|
61 |
+
}
|
62 |
+
|
63 |
+
def __init__(self):
|
64 |
+
self.device = torch.device(
|
65 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
66 |
+
self._load_all_models_once()
|
67 |
+
self.model_name = 'YOLOX-l'
|
68 |
+
self.model = self._load_model(self.model_name)
|
69 |
+
|
70 |
+
def _load_all_models_once(self) -> None:
|
71 |
+
for name in self.MODEL_DICT:
|
72 |
+
self._load_model(name)
|
73 |
+
|
74 |
+
def _load_model(self, name: str) -> nn.Module:
|
75 |
+
dic = self.MODEL_DICT[name]
|
76 |
+
return init_detector(dic['config'], dic['model'], device=self.device)
|
77 |
+
|
78 |
+
def set_model(self, name: str) -> None:
|
79 |
+
if name == self.model_name:
|
80 |
+
return
|
81 |
+
self.model_name = name
|
82 |
+
self.model = self._load_model(name)
|
83 |
+
|
84 |
+
def detect_and_visualize(
|
85 |
+
self, image: np.ndarray,
|
86 |
+
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]:
|
87 |
+
out = self.detect(image)
|
88 |
+
vis = self.visualize_detection_results(image, out, score_threshold)
|
89 |
+
return out, vis
|
90 |
+
|
91 |
+
def detect(self, image: np.ndarray) -> list[np.ndarray]:
|
92 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
93 |
+
out = inference_detector(self.model, image)
|
94 |
+
return out
|
95 |
+
|
96 |
+
def visualize_detection_results(
|
97 |
+
self,
|
98 |
+
image: np.ndarray,
|
99 |
+
detection_results: list[np.ndarray],
|
100 |
+
score_threshold: float = 0.3) -> np.ndarray:
|
101 |
+
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79
|
102 |
+
|
103 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
104 |
+
vis = self.model.show_result(image,
|
105 |
+
person_det,
|
106 |
+
score_thr=score_threshold,
|
107 |
+
bbox_color=None,
|
108 |
+
text_color=(200, 200, 200),
|
109 |
+
mask_color=None)
|
110 |
+
return vis[:, :, ::-1] # BGR -> RGB
|
111 |
+
|
112 |
+
|
113 |
+
class PoseModel:
|
114 |
+
MODEL_DICT = {
|
115 |
+
'ViTPose-B (single-task train)': {
|
116 |
+
'config':
|
117 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
118 |
+
'model': 'models/vitpose-b.pth',
|
119 |
+
},
|
120 |
+
'ViTPose-L (single-task train)': {
|
121 |
+
'config':
|
122 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
123 |
+
'model': 'models/vitpose-l.pth',
|
124 |
+
},
|
125 |
+
'ViTPose-B (multi-task train, COCO)': {
|
126 |
+
'config':
|
127 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py',
|
128 |
+
'model': 'models/vitpose-b-multi-coco.pth',
|
129 |
+
},
|
130 |
+
'ViTPose-L (multi-task train, COCO)': {
|
131 |
+
'config':
|
132 |
+
'ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py',
|
133 |
+
'model': 'models/vitpose-l-multi-coco.pth',
|
134 |
+
},
|
135 |
+
}
|
136 |
+
|
137 |
+
def __init__(self):
|
138 |
+
self.device = torch.device(
|
139 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
140 |
+
self.model_name = 'ViTPose-B (multi-task train, COCO)'
|
141 |
+
self.model = self._load_model(self.model_name)
|
142 |
+
|
143 |
+
def _load_all_models_once(self) -> None:
|
144 |
+
for name in self.MODEL_DICT:
|
145 |
+
self._load_model(name)
|
146 |
+
|
147 |
+
def _load_model(self, name: str) -> nn.Module:
|
148 |
+
dic = self.MODEL_DICT[name]
|
149 |
+
ckpt_path = huggingface_hub.hf_hub_download('hysts/ViTPose',
|
150 |
+
dic['model'],
|
151 |
+
use_auth_token=HF_TOKEN)
|
152 |
+
model = init_pose_model(dic['config'], ckpt_path, device=self.device)
|
153 |
+
return model
|
154 |
+
|
155 |
+
def set_model(self, name: str) -> None:
|
156 |
+
if name == self.model_name:
|
157 |
+
return
|
158 |
+
self.model_name = name
|
159 |
+
self.model = self._load_model(name)
|
160 |
+
|
161 |
+
def predict_pose_and_visualize(
|
162 |
+
self,
|
163 |
+
image: np.ndarray,
|
164 |
+
det_results: list[np.ndarray],
|
165 |
+
box_score_threshold: float,
|
166 |
+
kpt_score_threshold: float,
|
167 |
+
vis_dot_radius: int,
|
168 |
+
vis_line_thickness: int,
|
169 |
+
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]:
|
170 |
+
out = self.predict_pose(image, det_results, box_score_threshold)
|
171 |
+
vis = self.visualize_pose_results(image, out, kpt_score_threshold,
|
172 |
+
vis_dot_radius, vis_line_thickness)
|
173 |
+
return out, vis
|
174 |
+
|
175 |
+
def predict_pose(
|
176 |
+
self,
|
177 |
+
image: np.ndarray,
|
178 |
+
det_results: list[np.ndarray],
|
179 |
+
box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]:
|
180 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
181 |
+
person_results = process_mmdet_results(det_results, 1)
|
182 |
+
out, _ = inference_top_down_pose_model(self.model,
|
183 |
+
image,
|
184 |
+
person_results=person_results,
|
185 |
+
bbox_thr=box_score_threshold,
|
186 |
+
format='xyxy')
|
187 |
+
return out
|
188 |
+
|
189 |
+
def visualize_pose_results(self,
|
190 |
+
image: np.ndarray,
|
191 |
+
pose_results: list[dict[str, np.ndarray]],
|
192 |
+
kpt_score_threshold: float = 0.3,
|
193 |
+
vis_dot_radius: int = 4,
|
194 |
+
vis_line_thickness: int = 1) -> np.ndarray:
|
195 |
+
image = image[:, :, ::-1] # RGB -> BGR
|
196 |
+
vis = vis_pose_result(self.model,
|
197 |
+
image,
|
198 |
+
pose_results,
|
199 |
+
kpt_score_thr=kpt_score_threshold,
|
200 |
+
radius=vis_dot_radius,
|
201 |
+
thickness=vis_line_thickness)
|
202 |
+
return vis[:, :, ::-1] # BGR -> RGB
|
203 |
+
|
204 |
+
|
205 |
+
class AppModel:
|
206 |
+
def __init__(self):
|
207 |
+
self.det_model = DetModel()
|
208 |
+
self.pose_model = PoseModel()
|
209 |
+
|
210 |
+
def run(
|
211 |
+
self, video_path: str, det_model_name: str, pose_model_name: str,
|
212 |
+
box_score_threshold: float, max_num_frames: int,
|
213 |
+
kpt_score_threshold: float, vis_dot_radius: int,
|
214 |
+
vis_line_thickness: int
|
215 |
+
) -> tuple[str, list[list[dict[str, np.ndarray]]]]:
|
216 |
+
if video_path is None:
|
217 |
+
return
|
218 |
+
self.det_model.set_model(det_model_name)
|
219 |
+
self.pose_model.set_model(pose_model_name)
|
220 |
+
|
221 |
+
cap = cv2.VideoCapture(video_path)
|
222 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
223 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
224 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
225 |
+
|
226 |
+
preds_all = []
|
227 |
+
|
228 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
229 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
230 |
+
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
|
231 |
+
for _ in range(max_num_frames):
|
232 |
+
ok, frame = cap.read()
|
233 |
+
if not ok:
|
234 |
+
break
|
235 |
+
rgb_frame = frame[:, :, ::-1]
|
236 |
+
det_preds = self.det_model.detect(rgb_frame)
|
237 |
+
preds, vis = self.pose_model.predict_pose_and_visualize(
|
238 |
+
rgb_frame, det_preds, box_score_threshold, kpt_score_threshold,
|
239 |
+
vis_dot_radius, vis_line_thickness)
|
240 |
+
preds_all.append(preds)
|
241 |
+
writer.write(vis[:, :, ::-1])
|
242 |
+
cap.release()
|
243 |
+
writer.release()
|
244 |
+
|
245 |
+
return out_file.name, preds_all
|
246 |
+
|
247 |
+
def visualize_pose_results(self, video_path: str,
|
248 |
+
pose_preds_all: list[list[dict[str,
|
249 |
+
np.ndarray]]],
|
250 |
+
kpt_score_threshold: float, vis_dot_radius: int,
|
251 |
+
vis_line_thickness: int) -> str:
|
252 |
+
if video_path is None or pose_preds_all is None:
|
253 |
+
return
|
254 |
+
cap = cv2.VideoCapture(video_path)
|
255 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
256 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
257 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
258 |
+
|
259 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
260 |
+
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
261 |
+
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
|
262 |
+
for pose_preds in pose_preds_all:
|
263 |
+
ok, frame = cap.read()
|
264 |
+
if not ok:
|
265 |
+
break
|
266 |
+
rgb_frame = frame[:, :, ::-1]
|
267 |
+
vis = self.pose_model.visualize_pose_results(
|
268 |
+
rgb_frame, pose_preds, kpt_score_threshold, vis_dot_radius,
|
269 |
+
vis_line_thickness)
|
270 |
+
writer.write(vis[:, :, ::-1])
|
271 |
+
cap.release()
|
272 |
+
writer.release()
|
273 |
+
|
274 |
+
return out_file.name
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mmcv-full==1.5.0
|
2 |
+
mmdet==2.24.1
|
3 |
+
mmpose==0.25.1
|
4 |
+
numpy==1.23.5
|
5 |
+
opencv-python-headless==4.5.5.64
|
6 |
+
openmim==0.1.5
|
7 |
+
timm==0.5.4
|
8 |
+
torch==1.11.0
|
9 |
+
torchvision==0.12.0
|