Stable-X commited on
Commit
3c65eda
·
verified ·
1 Parent(s): 3bac2f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -123
app.py CHANGED
@@ -24,7 +24,7 @@ class Examples(gr.helpers.Examples):
24
 
25
  def load_predictor():
26
  """Load model predictor using torch.hub"""
27
- predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal", trust_repo=True)
28
  return predictor
29
 
30
  def process_image(
@@ -54,8 +54,6 @@ def create_demo():
54
 
55
  # Create processing functions for each data type
56
  process_object = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
57
- process_scene = spaces.GPU(functools.partial(process_image, predictor, data_type="indoor"))
58
- process_human = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
59
 
60
  # Define markdown content
61
  HEADER_MD = """
@@ -149,88 +147,6 @@ def create_demo():
149
  examples_per_page=50,
150
  )
151
 
152
- # Scene Tab
153
- with gr.Tab("Scene"):
154
- with gr.Row():
155
- with gr.Column():
156
- scene_input = gr.Image(label="Input Scene Image", type="filepath")
157
- scene_sharpness = gr.Slider(
158
- minimum=1,
159
- maximum=10,
160
- value=DEFAULT_SHARPNESS,
161
- step=1,
162
- label="Sharpness (inference steps)",
163
- info="Higher values produce sharper results but take longer"
164
- )
165
- with gr.Row():
166
- scene_submit_btn = gr.Button("Compute Normal", variant="primary")
167
- scene_reset_btn = gr.Button("Reset")
168
- with gr.Column():
169
- scene_output_slider = ImageSlider(
170
- label="Normal outputs",
171
- type="filepath",
172
- show_download_button=True,
173
- show_share_button=True,
174
- interactive=False,
175
- elem_classes="slider",
176
- position=0.25,
177
- )
178
-
179
- Examples(
180
- fn=process_scene,
181
- examples=sorted([
182
- os.path.join("files", "scene", name)
183
- for name in os.listdir(os.path.join("files", "scene"))
184
- if os.path.exists(os.path.join("files", "scene"))
185
- ]),
186
- inputs=[scene_input],
187
- outputs=[scene_output_slider],
188
- cache_examples=True,
189
- directory_name="examples_scene",
190
- examples_per_page=50,
191
- )
192
-
193
- # Human Tab
194
- with gr.Tab("Human"):
195
- with gr.Row():
196
- with gr.Column():
197
- human_input = gr.Image(label="Input Human Image", type="filepath")
198
- human_sharpness = gr.Slider(
199
- minimum=1,
200
- maximum=10,
201
- value=DEFAULT_SHARPNESS,
202
- step=1,
203
- label="Sharpness (inference steps)",
204
- info="Higher values produce sharper results but take longer"
205
- )
206
- with gr.Row():
207
- human_submit_btn = gr.Button("Compute Normal", variant="primary")
208
- human_reset_btn = gr.Button("Reset")
209
- with gr.Column():
210
- human_output_slider = ImageSlider(
211
- label="Normal outputs",
212
- type="filepath",
213
- show_download_button=True,
214
- show_share_button=True,
215
- interactive=False,
216
- elem_classes="slider",
217
- position=0.25,
218
- )
219
-
220
- Examples(
221
- fn=process_human,
222
- examples=sorted([
223
- os.path.join("files", "human", name)
224
- for name in os.listdir(os.path.join("files", "human"))
225
- if os.path.exists(os.path.join("files", "human"))
226
- ]),
227
- inputs=[human_input],
228
- outputs=[human_output_slider],
229
- cache_examples=True,
230
- directory_name="examples_human",
231
- examples_per_page=50,
232
- )
233
-
234
  # Event Handlers for Object Tab
235
  object_submit_btn.click(
236
  fn=lambda x, _: None if x else gr.Error("Please upload an image"),
@@ -250,44 +166,6 @@ def create_demo():
250
  queue=False,
251
  )
252
 
253
- # Event Handlers for Scene Tab
254
- scene_submit_btn.click(
255
- fn=lambda x, _: None if x else gr.Error("Please upload an image"),
256
- inputs=[scene_input, scene_sharpness],
257
- outputs=None,
258
- queue=False,
259
- ).success(
260
- fn=process_scene,
261
- inputs=[scene_input, scene_sharpness],
262
- outputs=[scene_output_slider],
263
- )
264
-
265
- scene_reset_btn.click(
266
- fn=lambda: (None, DEFAULT_SHARPNESS, None),
267
- inputs=[],
268
- outputs=[scene_input, scene_sharpness, scene_output_slider],
269
- queue=False,
270
- )
271
-
272
- # Event Handlers for Human Tab
273
- human_submit_btn.click(
274
- fn=lambda x, _: None if x else gr.Error("Please upload an image"),
275
- inputs=[human_input, human_sharpness],
276
- outputs=None,
277
- queue=False,
278
- ).success(
279
- fn=process_human,
280
- inputs=[human_input, human_sharpness],
281
- outputs=[human_output_slider],
282
- )
283
-
284
- human_reset_btn.click(
285
- fn=lambda: (None, DEFAULT_SHARPNESS, None),
286
- inputs=[],
287
- outputs=[human_input, human_sharpness, human_output_slider],
288
- queue=False,
289
- )
290
-
291
  return demo
292
 
293
  def main():
 
24
 
25
  def load_predictor():
26
  """Load model predictor using torch.hub"""
27
+ predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal", trust_repo=True, yoso_version='yoso-normal-v1-7')
28
  return predictor
29
 
30
  def process_image(
 
54
 
55
  # Create processing functions for each data type
56
  process_object = spaces.GPU(functools.partial(process_image, predictor, data_type="object"))
 
 
57
 
58
  # Define markdown content
59
  HEADER_MD = """
 
147
  examples_per_page=50,
148
  )
149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
  # Event Handlers for Object Tab
151
  object_submit_btn.click(
152
  fn=lambda x, _: None if x else gr.Error("Please upload an image"),
 
166
  queue=False,
167
  )
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  return demo
170
 
171
  def main():