Spaces:
Running
on
Zero
Running
on
Zero
Stable-X
commited on
Commit
•
b353dc0
1
Parent(s):
35c32ba
Update scheduler
Browse files
stablenormal/scheduler/heuristics_ddimsampler.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput, DDIMScheduler
|
8 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
9 |
+
from diffusers.configuration_utils import register_to_config, ConfigMixin
|
10 |
+
import pdb
|
11 |
+
|
12 |
+
|
13 |
+
class HEURI_DDIMScheduler(DDIMScheduler, SchedulerMixin, ConfigMixin):
|
14 |
+
|
15 |
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
16 |
+
"""
|
17 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
18 |
+
|
19 |
+
Args:
|
20 |
+
num_inference_steps (`int`):
|
21 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
22 |
+
"""
|
23 |
+
|
24 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
25 |
+
raise ValueError(
|
26 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
27 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
28 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
29 |
+
)
|
30 |
+
|
31 |
+
self.num_inference_steps = num_inference_steps
|
32 |
+
|
33 |
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
34 |
+
if self.config.timestep_spacing == "linspace":
|
35 |
+
timesteps = (
|
36 |
+
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
37 |
+
.round()[::-1]
|
38 |
+
.copy()
|
39 |
+
.astype(np.int64)
|
40 |
+
)
|
41 |
+
elif self.config.timestep_spacing == "leading":
|
42 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
43 |
+
# creates integer timesteps by multiplying by ratio
|
44 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
45 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
46 |
+
timesteps += self.config.steps_offset
|
47 |
+
elif self.config.timestep_spacing == "trailing":
|
48 |
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
49 |
+
# creates integer timesteps by multiplying by ratio
|
50 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
51 |
+
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
52 |
+
timesteps -= 1
|
53 |
+
else:
|
54 |
+
raise ValueError(
|
55 |
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
|
56 |
+
)
|
57 |
+
|
58 |
+
timesteps = torch.from_numpy(timesteps).to(device)
|
59 |
+
naive_sampling_step = num_inference_steps //2
|
60 |
+
|
61 |
+
self.naive_sampling_step = naive_sampling_step
|
62 |
+
|
63 |
+
timesteps[:naive_sampling_step] = timesteps[naive_sampling_step] # refine on step 5 for 5 steps, then backward from step 6
|
64 |
+
|
65 |
+
timesteps = [timestep + 1 for timestep in timesteps]
|
66 |
+
|
67 |
+
self.timesteps = timesteps
|
68 |
+
self.gap = self.config.num_train_timesteps // self.num_inference_steps
|
69 |
+
self.prev_timesteps = [timestep for timestep in self.timesteps[1:]]
|
70 |
+
self.prev_timesteps.append(torch.zeros_like(self.prev_timesteps[-1]))
|
71 |
+
|
72 |
+
def step(
|
73 |
+
self,
|
74 |
+
model_output: torch.Tensor,
|
75 |
+
timestep: int,
|
76 |
+
prev_timestep: int,
|
77 |
+
sample: torch.Tensor,
|
78 |
+
eta: float = 0.0,
|
79 |
+
use_clipped_model_output: bool = False,
|
80 |
+
generator=None,
|
81 |
+
cur_step=None,
|
82 |
+
gauss_latent=None,
|
83 |
+
variance_noise: Optional[torch.Tensor] = None,
|
84 |
+
return_dict: bool = True,
|
85 |
+
) -> Union[DDIMSchedulerOutput, Tuple]:
|
86 |
+
"""
|
87 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
88 |
+
process from the learned model outputs (most often the predicted noise).
|
89 |
+
|
90 |
+
Args:
|
91 |
+
model_output (`torch.Tensor`):
|
92 |
+
The direct output from learned diffusion model.
|
93 |
+
timestep (`float`):
|
94 |
+
The current discrete timestep in the diffusion chain.
|
95 |
+
pre_timestep (`float`):
|
96 |
+
next_timestep
|
97 |
+
sample (`torch.Tensor`):
|
98 |
+
A current instance of a sample created by the diffusion process.
|
99 |
+
eta (`float`):
|
100 |
+
The weight of noise for added noise in diffusion step.
|
101 |
+
use_clipped_model_output (`bool`, defaults to `False`):
|
102 |
+
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
103 |
+
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
104 |
+
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
105 |
+
`use_clipped_model_output` has no effect.
|
106 |
+
generator (`torch.Generator`, *optional*):
|
107 |
+
A random number generator.
|
108 |
+
variance_noise (`torch.Tensor`):
|
109 |
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
110 |
+
itself. Useful for methods such as [`CycleDiffusion`].
|
111 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
112 |
+
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
|
116 |
+
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
|
117 |
+
tuple is returned where the first element is the sample tensor.
|
118 |
+
|
119 |
+
"""
|
120 |
+
if self.num_inference_steps is None:
|
121 |
+
raise ValueError(
|
122 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
123 |
+
)
|
124 |
+
|
125 |
+
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
126 |
+
# Ideally, read DDIM paper in-detail understanding
|
127 |
+
|
128 |
+
# Notation (<variable name> -> <name in paper>
|
129 |
+
# - pred_noise_t -> e_theta(x_t, t)
|
130 |
+
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
131 |
+
# - std_dev_t -> sigma_t
|
132 |
+
# - eta -> η
|
133 |
+
# - pred_sample_direction -> "direction pointing to x_t"
|
134 |
+
# - pred_prev_sample -> "x_t-1"
|
135 |
+
|
136 |
+
# 1. get previous step value (=t-1)
|
137 |
+
# trick from heuri_sampling
|
138 |
+
if cur_step == self.naive_sampling_step and timestep == prev_timestep:
|
139 |
+
timestep += self.gap
|
140 |
+
|
141 |
+
prev_timestep = prev_timestep # NOTE naive sampling
|
142 |
+
|
143 |
+
# 2. compute alphas, betas
|
144 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
145 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
146 |
+
|
147 |
+
beta_prod_t = 1 - alpha_prod_t
|
148 |
+
|
149 |
+
# 3. compute predicted original sample from predicted noise also called
|
150 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
151 |
+
if self.config.prediction_type == "epsilon":
|
152 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
153 |
+
pred_epsilon = model_output
|
154 |
+
elif self.config.prediction_type == "sample":
|
155 |
+
pred_original_sample = model_output
|
156 |
+
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
157 |
+
elif self.config.prediction_type == "v_prediction":
|
158 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
159 |
+
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
160 |
+
else:
|
161 |
+
raise ValueError(
|
162 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
163 |
+
" `v_prediction`"
|
164 |
+
)
|
165 |
+
|
166 |
+
# 4. Clip or threshold "predicted x_0"
|
167 |
+
if self.config.thresholding:
|
168 |
+
pred_original_sample = self._threshold_sample(pred_original_sample)
|
169 |
+
|
170 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
171 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
172 |
+
variance = self._get_variance(timestep, prev_timestep)
|
173 |
+
std_dev_t = eta * variance ** (0.5)
|
174 |
+
|
175 |
+
if use_clipped_model_output:
|
176 |
+
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
|
177 |
+
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
178 |
+
|
179 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
180 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
|
181 |
+
|
182 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
183 |
+
if gauss_latent == None:
|
184 |
+
gauss_latent = torch.randn_like(pred_original_sample)
|
185 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
186 |
+
|
187 |
+
if eta > 0:
|
188 |
+
if variance_noise is not None and generator is not None:
|
189 |
+
raise ValueError(
|
190 |
+
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
|
191 |
+
" `variance_noise` stays `None`."
|
192 |
+
)
|
193 |
+
|
194 |
+
if variance_noise is None:
|
195 |
+
variance_noise = randn_tensor(
|
196 |
+
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
|
197 |
+
)
|
198 |
+
variance = std_dev_t * variance_noise
|
199 |
+
|
200 |
+
prev_sample = prev_sample + variance
|
201 |
+
|
202 |
+
if cur_step < self.naive_sampling_step:
|
203 |
+
prev_sample = self.add_noise(pred_original_sample, gauss_latent, timestep)
|
204 |
+
|
205 |
+
if not return_dict:
|
206 |
+
return (prev_sample,)
|
207 |
+
|
208 |
+
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
def add_noise(
|
213 |
+
self,
|
214 |
+
original_samples: torch.Tensor,
|
215 |
+
noise: torch.Tensor,
|
216 |
+
timesteps: torch.IntTensor,
|
217 |
+
) -> torch.Tensor:
|
218 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
219 |
+
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
220 |
+
# for the subsequent add_noise calls
|
221 |
+
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
222 |
+
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
223 |
+
timesteps = timesteps.to(original_samples.device)
|
224 |
+
|
225 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
226 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
227 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
228 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
229 |
+
|
230 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
231 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
232 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
233 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
234 |
+
|
235 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
236 |
+
return noisy_samples
|