Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,7 @@ from gradio_imageslider import ImageSlider
|
|
33 |
from tqdm import tqdm
|
34 |
|
35 |
from pathlib import Path
|
36 |
-
|
37 |
import gradio
|
38 |
from gradio.utils import get_cache_folder
|
39 |
from stablenormal.pipeline_yoso_normal import YOSONormalsPipeline
|
@@ -64,6 +64,19 @@ def process_image_check(path_input):
|
|
64 |
"Missing image in the first pane: upload a file or use one from the gallery below."
|
65 |
)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def process_image(
|
68 |
pipe,
|
69 |
path_input,
|
@@ -72,27 +85,20 @@ def process_image(
|
|
72 |
print(f"Processing image {name_base}{name_ext}")
|
73 |
|
74 |
path_output_dir = tempfile.mkdtemp()
|
75 |
-
# path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_normal_fp32.npy")
|
76 |
path_out_png = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")
|
77 |
|
78 |
input_image = Image.open(path_input)
|
79 |
-
|
80 |
-
|
81 |
pipe_out = pipe(
|
82 |
input_image,
|
83 |
match_input_resolution=False,
|
84 |
-
|
85 |
)
|
86 |
|
87 |
normal_pred = pipe_out.prediction[0, :, :]
|
88 |
normal_colored = pipe.image_processor.visualize_normals(pipe_out.prediction)
|
89 |
normal_colored[-1].save(path_out_png)
|
90 |
-
print(path_out_png)
|
91 |
-
# np.save(path_out_fp32, normal_pred)
|
92 |
-
# path_out_vis = os.path.join(path_output_dir, f"{name_base}_normal_refinement_process.gif")
|
93 |
-
# normal_colored[0].save(path_out_vis, save_all=True,
|
94 |
-
# append_images=normal_colored[1:],
|
95 |
-
# duration=400, loop=0)
|
96 |
return [input_image, path_out_png]
|
97 |
|
98 |
def center_crop(img):
|
@@ -155,7 +161,6 @@ def process_video(
|
|
155 |
pipe_out = pipe(
|
156 |
frame_pil,
|
157 |
match_input_resolution=False,
|
158 |
-
return_intermediate_result=False
|
159 |
)
|
160 |
|
161 |
processed_frame = pipe.image_processor.visualize_normals( # noqa
|
@@ -275,7 +280,7 @@ def run_demo_server(pipe):
|
|
275 |
]),
|
276 |
inputs=[image_input],
|
277 |
outputs=[image_output_slider],
|
278 |
-
cache_examples=
|
279 |
directory_name="examples_image",
|
280 |
)
|
281 |
|
@@ -315,7 +320,7 @@ def run_demo_server(pipe):
|
|
315 |
inputs=[video_input],
|
316 |
outputs=[processed_frames, video_output_files],
|
317 |
directory_name="examples_video",
|
318 |
-
cache_examples=
|
319 |
)
|
320 |
|
321 |
with gr.Tab("Panorama"):
|
@@ -477,18 +482,17 @@ def main():
|
|
477 |
os.system("pip freeze")
|
478 |
|
479 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
480 |
-
|
481 |
x_start_pipeline = YOSONormalsPipeline.from_pretrained(
|
482 |
-
'
|
483 |
t_start=300).to(device)
|
484 |
dinov2_prior = DINOv2_Encoder(size=672)
|
485 |
dinov2_prior.to(device)
|
486 |
|
487 |
-
pipe = StableNormalPipeline.from_pretrained('
|
488 |
scheduler=HEURI_DDIMScheduler(prediction_type='sample',
|
489 |
beta_start=0.00085, beta_end=0.0120,
|
490 |
beta_schedule = "scaled_linear"))
|
491 |
-
# two stage concat
|
492 |
pipe.x_start_pipeline = x_start_pipeline
|
493 |
pipe.prior = dinov2_prior
|
494 |
pipe.to(device)
|
|
|
33 |
from tqdm import tqdm
|
34 |
|
35 |
from pathlib import Path
|
36 |
+
import cv2
|
37 |
import gradio
|
38 |
from gradio.utils import get_cache_folder
|
39 |
from stablenormal.pipeline_yoso_normal import YOSONormalsPipeline
|
|
|
64 |
"Missing image in the first pane: upload a file or use one from the gallery below."
|
65 |
)
|
66 |
|
67 |
+
def resize_image(input_image, resolution):
|
68 |
+
input_image = np.asarray(input_image)
|
69 |
+
H, W, C = input_image.shape
|
70 |
+
H = float(H)
|
71 |
+
W = float(W)
|
72 |
+
k = float(resolution) / min(H, W)
|
73 |
+
H *= k
|
74 |
+
W *= k
|
75 |
+
H = int(np.round(H / 64.0)) * 64
|
76 |
+
W = int(np.round(W / 64.0)) * 64
|
77 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
78 |
+
return Image.fromarray(img)
|
79 |
+
|
80 |
def process_image(
|
81 |
pipe,
|
82 |
path_input,
|
|
|
85 |
print(f"Processing image {name_base}{name_ext}")
|
86 |
|
87 |
path_output_dir = tempfile.mkdtemp()
|
|
|
88 |
path_out_png = os.path.join(path_output_dir, f"{name_base}_normal_colored.png")
|
89 |
|
90 |
input_image = Image.open(path_input)
|
91 |
+
input_image = resize_image(input_image, default_image_processing_resolution)
|
92 |
+
|
93 |
pipe_out = pipe(
|
94 |
input_image,
|
95 |
match_input_resolution=False,
|
96 |
+
processing_resolution=max(input_image.size)
|
97 |
)
|
98 |
|
99 |
normal_pred = pipe_out.prediction[0, :, :]
|
100 |
normal_colored = pipe.image_processor.visualize_normals(pipe_out.prediction)
|
101 |
normal_colored[-1].save(path_out_png)
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
return [input_image, path_out_png]
|
103 |
|
104 |
def center_crop(img):
|
|
|
161 |
pipe_out = pipe(
|
162 |
frame_pil,
|
163 |
match_input_resolution=False,
|
|
|
164 |
)
|
165 |
|
166 |
processed_frame = pipe.image_processor.visualize_normals( # noqa
|
|
|
280 |
]),
|
281 |
inputs=[image_input],
|
282 |
outputs=[image_output_slider],
|
283 |
+
cache_examples=False,
|
284 |
directory_name="examples_image",
|
285 |
)
|
286 |
|
|
|
320 |
inputs=[video_input],
|
321 |
outputs=[processed_frames, video_output_files],
|
322 |
directory_name="examples_video",
|
323 |
+
cache_examples=False,
|
324 |
)
|
325 |
|
326 |
with gr.Tab("Panorama"):
|
|
|
482 |
os.system("pip freeze")
|
483 |
|
484 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
485 |
+
|
486 |
x_start_pipeline = YOSONormalsPipeline.from_pretrained(
|
487 |
+
'weights/yoso-normal-v0-1', trust_remote_code=True,
|
488 |
t_start=300).to(device)
|
489 |
dinov2_prior = DINOv2_Encoder(size=672)
|
490 |
dinov2_prior.to(device)
|
491 |
|
492 |
+
pipe = StableNormalPipeline.from_pretrained('weights/stable-normal-v0-1', t_start=300, trust_remote_code=True,
|
493 |
scheduler=HEURI_DDIMScheduler(prediction_type='sample',
|
494 |
beta_start=0.00085, beta_end=0.0120,
|
495 |
beta_schedule = "scaled_linear"))
|
|
|
496 |
pipe.x_start_pipeline = x_start_pipeline
|
497 |
pipe.prior = dinov2_prior
|
498 |
pipe.to(device)
|