import pandas as pd import streamlit as st import numpy as np from streamlit_card import card import yfinance as yf import altair as alt # Set the background color and opacity for the container container_style = """ background-color: rgba(55, 65, 82, 0.7); padding: 100px; border-radius: 10px; margin-top: 20px; margin-bottom: 20px; """ st.markdown("

Volatility Indicator

", unsafe_allow_html=True) st.write(""" ### Economic Volitility Examination""") # Create a translucent container x = card(title="", text = "When we talk about stock volitility, we typically need fundamental data like company earning reports, interest rates, and technical analysis trends", styles = { "card": { "width": "650px", "height": "200px", "background-color": "rgba(55, 65, 82, 1)", "padding": "20px", "margin-top": "20px", #"margin-bottom": "20px", }, } ) # Download historical stock data for Tesla ticker = "TSLA" start_date = "2021-09-29" end_date = "2022-09-29" stock_data = yf.download(ticker, start=start_date, end=end_date) # Calculate daily returns stock_data["Daily_Return"] = stock_data["Close"].pct_change() # Calculate historical volatility (standard deviation) historical_volatility = stock_data["Daily_Return"].std() # Streamlit app st.markdown("

Tesla Stock Volatility Analysis

", unsafe_allow_html=True) # Display historical stock data st.subheader("Historical Stock Data") st.write(stock_data) stock_data = yf.download(ticker, start=start_date, end=end_date) # Calculate daily returns stock_data["Daily_Return"] = ((stock_data["Close"] / stock_data["Open"]) - 1) notable = [] days = [] for day in stock_data["Daily_Return"]: if day > 0.1: notable.append(day) days.append("Date") elif day < -0.1: notable.append(day) days.append("Date") # Line chart for stock prices st.subheader("Tesla Stock Prices Over Time") line_chart = alt.Chart(stock_data.reset_index()).mark_line().encode( x="Date:T", y="Daily_Return", tooltip=["Date", "Daily_Return"] ).properties(width=800, height=400) st.altair_chart(line_chart, use_container_width=True) st.write("2021-11-09 00:00:00: \"Telsa fire in Stanford took 42 minutes to extinguish\" ") st.write("2022-01-27 00:00:00: \"Tesla drops more than 11% as investors digest new vehicle delays\"") st.write("2022-02-23 00:00:00: \"Tesla model Y wins EV award\"") st.write("2022-04-26 00:00:00: \"Elon Musk says people might download their personalities onto a human robot constructed by Tesla\"") st.markdown("

Our Approach

", unsafe_allow_html=True) x = card(title="", text = "How can we predict the potential social impact on stock volitility? Qualitative tabular data poses a challenge concerning data processing resources", styles = { "card": { "width": "650px", "height": "200px", "background-color": "rgba(55, 65, 82, 1)", "padding": "50px", "margin-top": "10px", "margin-bottom": "10px", }, } ) st.write("") # Streamlit app st.title('First Model') model1 = card(title="", text = "", styles = { "card": { "width": "650px", "height": "200px", "margin-top": "10px", "margin-bottom": "10px", }, }, image="https://i.postimg.cc/Bn8q0Ddy/XBoost.png", on_click=lambda: st.write("The model generating embeddings represent the data in the prompt. Each embedding captures an immense amount of training data that is then used to project desired data") ) st.title('Second Model') mod2 = card(title="", text = "", styles = { "card": { "width": "700px", "height": "400px", "margin-top": "20px", "margin-bottom": "20px", } }, image="https://miro.medium.com/v2/resize:fit:976/1*oc1gaCFvgWXq_gHQFM63UQ.png", on_click=lambda: st.write("A neural network learns to map input data to output by adjusting the strengths of connections (weights) between nodes during a training process. This enables the network to recognize patterns and make predictions on new data.") )