# Imports import gradio as gr import spaces import torch from PIL import Image from transformers import AutoModel, AutoTokenizer # Pre-Initialize DEVICE = "auto" if DEVICE == "auto": DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"[SYSTEM] | Using {DEVICE} type compute device.") # Variables DEFAULT_INPUT = "Describe in one paragraph." repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True) css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' # Functions @spaces.GPU(duration=60) def generate(image, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512): global model, tokenizer image_rgb = Image.open(image).convert("RGB") print(image_rgb, instruction) inputs = [{"role": "user", "content": [image_rgb, instruction]}] parameters = { "sampling": sampling, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty, "max_new_tokens": max_tokens } output = model.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters) return output def cloud(): print("[CLOUD] | Space maintained.") # Initialize with gr.Blocks(css=css) as main: with gr.Column(): gr.Markdown("🪄 Analyze images and caption them using state-of-the-art openbmb/MiniCPM-V-2_6.") with gr.Column(): input = gr.Image(label="Image") instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") sampling = gr.Checkbox(value=False, label="Sampling") temperature = gr.Slider(minimum=0, maximum=2, step=0.01, value=0.7, label="Temperature") top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty") max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") submit = gr.Button("▶") maintain = gr.Button("☁️") with gr.Column(): output = gr.Textbox(lines=1, value="", label="Output") submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) maintain.click(cloud, inputs=[], outputs=[], queue=False) main.launch(show_api=True)