Spaces:
Runtime error
Runtime error
Stefan Heimersheim
commited on
Commit
•
8b9fdad
1
Parent(s):
40f75e8
Added code
Browse files- Home.py +245 -0
- INFO.md +8 -0
- requirements.txt +7 -0
Home.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformer_lens import HookedTransformer, utils
|
3 |
+
from io import StringIO
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
from functools import partial
|
7 |
+
import plotly.offline as pyo
|
8 |
+
import plotly.graph_objs as go
|
9 |
+
import numpy as np
|
10 |
+
import plotly.express as px
|
11 |
+
import circuitsvis as cv
|
12 |
+
|
13 |
+
# Little bit of front end for model selector
|
14 |
+
|
15 |
+
# Radio buttons
|
16 |
+
model_name = st.sidebar.radio("Model", [
|
17 |
+
"gelu-1l",
|
18 |
+
"gelu-2l",
|
19 |
+
#"gelu-3l",
|
20 |
+
#"gelu-4l",
|
21 |
+
#"attn-only-1l",
|
22 |
+
#"attn-only-2l",
|
23 |
+
#"attn-only-3l",
|
24 |
+
#"attn-only-4l",
|
25 |
+
#"solu-1l",
|
26 |
+
#"solu-2l",
|
27 |
+
#"solu-3l",
|
28 |
+
#"solu-4l",
|
29 |
+
#"solu-6l",
|
30 |
+
#"solu-8l",
|
31 |
+
#"solu-10l",
|
32 |
+
#"solu-12l",
|
33 |
+
#"gpt2-small",
|
34 |
+
#"gpt2-medium",
|
35 |
+
#"gpt2-large",
|
36 |
+
#"gpt2-xl",
|
37 |
+
], index=1)
|
38 |
+
|
39 |
+
|
40 |
+
# Backend code
|
41 |
+
|
42 |
+
model = HookedTransformer.from_pretrained(model_name)
|
43 |
+
|
44 |
+
def predict_next_token(prompt):
|
45 |
+
logits = model(prompt)[0,-1]
|
46 |
+
answer_index = logits.argmax()
|
47 |
+
answer = model.tokenizer.decode(answer_index)
|
48 |
+
answer = f"<b>|{answer}|</b> (answer by {model.cfg.model_name})"
|
49 |
+
return answer
|
50 |
+
|
51 |
+
def test_prompt(prompt, answer):
|
52 |
+
output = StringIO()
|
53 |
+
sys.stdout = output
|
54 |
+
utils.test_prompt(prompt, answer, model)
|
55 |
+
output = output.getvalue()
|
56 |
+
return output
|
57 |
+
|
58 |
+
def compute_residual_stream_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None, layers=None):
|
59 |
+
model.reset_hooks()
|
60 |
+
clean_answer_index = model.tokenizer.encode(answer)[0]
|
61 |
+
corrupt_answer_index = model.tokenizer.encode(corrupt_answer)[0]
|
62 |
+
clean_tokens = model.to_str_tokens(clean_prompt)
|
63 |
+
_, corrupt_cache = model.run_with_cache(corrupt_prompt)
|
64 |
+
# Patching function
|
65 |
+
def patch_residual_stream(activations, hook, layer="blocks.6.hook_resid_post", pos=5):
|
66 |
+
activations[:, pos, :] = corrupt_cache[layer][:, pos, :]
|
67 |
+
return activations
|
68 |
+
# Compute logit diffs
|
69 |
+
n_layers = len(layers)
|
70 |
+
n_pos = len(clean_tokens)
|
71 |
+
patching_effect = torch.zeros(n_layers, n_pos)
|
72 |
+
for l, layer in enumerate(layers):
|
73 |
+
for pos in range(n_pos):
|
74 |
+
fwd_hooks = [(layer, partial(patch_residual_stream, layer=layer, pos=pos))]
|
75 |
+
prediction_logits = model.run_with_hooks(clean_prompt, fwd_hooks=fwd_hooks)[0, -1]
|
76 |
+
patching_effect[l, pos] = prediction_logits[clean_answer_index] - prediction_logits[corrupt_answer_index]
|
77 |
+
return patching_effect
|
78 |
+
|
79 |
+
def compute_attn_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None):
|
80 |
+
use_attn_result_prev = model.cfg.use_attn_result
|
81 |
+
model.cfg.use_attn_result = True
|
82 |
+
clean_answer_index = model.tokenizer.encode(answer)[0]
|
83 |
+
corrupt_answer_index = model.tokenizer.encode(corrupt_answer)[0]
|
84 |
+
clean_tokens = model.to_str_tokens(clean_prompt)
|
85 |
+
_, corrupt_cache = model.run_with_cache(corrupt_prompt)
|
86 |
+
# Patching function
|
87 |
+
def patch_head_result(activations, hook, head=None, pos=None):
|
88 |
+
activations[:, pos, head, :] = corrupt_cache[hook.name][:, pos, head, :]
|
89 |
+
return activations
|
90 |
+
|
91 |
+
n_layers = model.cfg.n_layers
|
92 |
+
n_heads = model.cfg.n_heads
|
93 |
+
n_pos = len(clean_tokens)
|
94 |
+
patching_effect = torch.zeros(n_layers*n_heads, n_pos)
|
95 |
+
for layer in range(n_layers):
|
96 |
+
for head in range(n_heads):
|
97 |
+
for pos in range(n_pos):
|
98 |
+
fwd_hooks = [(f"blocks.{layer}.attn.hook_result", partial(patch_head_result, head=head, pos=pos))]
|
99 |
+
prediction_logits = model.run_with_hooks(clean_prompt, fwd_hooks=fwd_hooks)[0, -1]
|
100 |
+
patching_effect[n_heads*layer+head, pos] = prediction_logits[clean_answer_index] - prediction_logits[corrupt_answer_index]
|
101 |
+
model.cfg.use_attn_result = use_attn_result_prev
|
102 |
+
return patching_effect
|
103 |
+
|
104 |
+
def imshow(tensor, xlabel="X", ylabel="Y", zlabel=None, xticks=None, yticks=None, c_midpoint=0.0, c_scale="RdBu", **kwargs):
|
105 |
+
tensor = utils.to_numpy(tensor)
|
106 |
+
xticks = [str(x) for x in xticks]
|
107 |
+
yticks = [str(y) for y in yticks]
|
108 |
+
labels = {"x": xlabel, "y": ylabel}
|
109 |
+
if zlabel is not None:
|
110 |
+
labels["color"] = zlabel
|
111 |
+
fig = px.imshow(tensor, x=xticks, y=yticks, labels=labels, color_continuous_midpoint=c_midpoint,
|
112 |
+
color_continuous_scale=c_scale, **kwargs)
|
113 |
+
return fig
|
114 |
+
|
115 |
+
def plot_residual_stream_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None):
|
116 |
+
layers = ["blocks.0.hook_resid_pre", *[f"blocks.{i}.hook_resid_post" for i in range(model.cfg.n_layers)]]
|
117 |
+
token_labels = model.to_str_tokens(clean_prompt)
|
118 |
+
patching_effect = compute_residual_stream_patch(clean_prompt=clean_prompt, answer=answer, corrupt_prompt=corrupt_prompt, corrupt_answer=corrupt_answer, layers=layers)
|
119 |
+
fig = imshow(patching_effect, xticks=token_labels, yticks=layers, xlabel="Position", ylabel="Layer",
|
120 |
+
zlabel="Logit Difference", title="Patching residual stream at specific layer and position")
|
121 |
+
return fig
|
122 |
+
|
123 |
+
def plot_attn_patch(clean_prompt=None, answer=None, corrupt_prompt=None, corrupt_answer=None):
|
124 |
+
clean_tokens = model.to_str_tokens(clean_prompt)
|
125 |
+
n_layers = model.cfg.n_layers
|
126 |
+
n_heads = model.cfg.n_heads
|
127 |
+
layerhead_labels = [f"{l}.{h}" for l in range(n_layers) for h in range(n_heads)]
|
128 |
+
token_labels = [f"(pos {i:2}) {t}" for i, t in enumerate(clean_tokens)]
|
129 |
+
patching_effect = compute_attn_patch(clean_prompt=clean_prompt, answer=answer, corrupt_prompt=corrupt_prompt, corrupt_answer=corrupt_answer)
|
130 |
+
return imshow(patching_effect, xticks=token_labels, yticks=layerhead_labels, xlabel="Position", ylabel="Layer.Head",
|
131 |
+
zlabel="Logit Difference", title=f"Patching attention outputs for specific layer, head, and position", width=600, height=300+200*n_layers)
|
132 |
+
|
133 |
+
|
134 |
+
# Frontend code
|
135 |
+
st.title("Simple Trafo Mech Int")
|
136 |
+
st.subheader("Transformer Mechanistic Interpretability")
|
137 |
+
st.markdown("Powered by [TransformerLens](https://github.com/neelnanda-io/TransformerLens/)")
|
138 |
+
st.markdown("For _what_ these plots are, and _why_, see this [tutorial](https://docs.google.com/document/d/1e6cs8d9QNretWvOLsv_KaMp6kSPWpJEW0GWc0nwjqxo/).")
|
139 |
+
|
140 |
+
# Predict next token
|
141 |
+
st.header("Predict the next token")
|
142 |
+
st.markdown("Just a simple test UI, enter a prompt and the model will predict the next token")
|
143 |
+
prompt_simple = st.text_input("Prompt:", "Today, the weather is", key="prompt_simple")
|
144 |
+
|
145 |
+
if "prompt_simple_output" not in st.session_state:
|
146 |
+
st.session_state.prompt_simple_output = None
|
147 |
+
|
148 |
+
if st.button("Run model", key="key_button_prompt_simple"):
|
149 |
+
res = predict_next_token(prompt_simple)
|
150 |
+
st.session_state.prompt_simple_output = res
|
151 |
+
|
152 |
+
if st.session_state.prompt_simple_output:
|
153 |
+
st.markdown(st.session_state.prompt_simple_output, unsafe_allow_html=True)
|
154 |
+
|
155 |
+
|
156 |
+
# Test prompt
|
157 |
+
st.header("Verbose test prompt")
|
158 |
+
st.markdown("Enter a prompt and the correct answer, the model will run the prompt and print the results")
|
159 |
+
|
160 |
+
prompt = st.text_input("Prompt:", "The most popular programming language is", key="prompt")
|
161 |
+
answer = st.text_input("Answer:", " Java", key="answer")
|
162 |
+
|
163 |
+
if "test_prompt_output" not in st.session_state:
|
164 |
+
st.session_state.test_prompt_output = None
|
165 |
+
|
166 |
+
if st.button("Run model", key="key_button_test_prompt"):
|
167 |
+
res = test_prompt(prompt, answer)
|
168 |
+
st.session_state.test_prompt_output = res
|
169 |
+
|
170 |
+
if st.session_state.test_prompt_output:
|
171 |
+
st.code(st.session_state.test_prompt_output)
|
172 |
+
|
173 |
+
|
174 |
+
# Residual stream patching
|
175 |
+
|
176 |
+
st.header("Residual stream patching")
|
177 |
+
st.markdown("Enter a clean prompt, correct answer, corrupt prompt and corrupt answer, the model will compute the patching effect")
|
178 |
+
|
179 |
+
default_clean_prompt = "Her name was Alex Hart. Tomorrow at lunch time Alex"
|
180 |
+
default_clean_answer = "Hart"
|
181 |
+
default_corrupt_prompt = "Her name was Alex Carroll. Tomorrow at lunch time Alex"
|
182 |
+
default_corrupt_answer = "Carroll"
|
183 |
+
|
184 |
+
clean_prompt = st.text_input("Clean Prompt:", default_clean_prompt)
|
185 |
+
clean_answer = st.text_input("Correct Answer:", default_clean_answer)
|
186 |
+
corrupt_prompt = st.text_input("Corrupt Prompt:", default_corrupt_prompt)
|
187 |
+
corrupt_answer = st.text_input("Corrupt Answer:", default_corrupt_answer)
|
188 |
+
|
189 |
+
if "residual_stream_patch_out" not in st.session_state:
|
190 |
+
st.session_state.residual_stream_patch_out = None
|
191 |
+
|
192 |
+
if st.button("Run model", key="key_button_residual_stream_patch"):
|
193 |
+
fig = plot_residual_stream_patch(clean_prompt=clean_prompt, answer=clean_answer, corrupt_prompt=corrupt_prompt, corrupt_answer=corrupt_answer)
|
194 |
+
st.session_state.residual_stream_patch_out = fig
|
195 |
+
|
196 |
+
if st.session_state.residual_stream_patch_out:
|
197 |
+
st.plotly_chart(st.session_state.residual_stream_patch_out)
|
198 |
+
|
199 |
+
|
200 |
+
# Attention head output
|
201 |
+
|
202 |
+
st.header("Attention head output patching")
|
203 |
+
st.markdown("Enter a clean prompt, correct answer, corrupt prompt and corrupt answer, the model will compute the patching effect")
|
204 |
+
|
205 |
+
clean_prompt_attn = st.text_input("Clean Prompt:", default_clean_prompt, key="key2_clean_prompt_attn")
|
206 |
+
clean_answer_attn = st.text_input("Correct Answer:", default_clean_answer, key="key2_clean_answer_attn")
|
207 |
+
corrupt_prompt_attn = st.text_input("Corrupt Prompt:", default_corrupt_prompt, key="key2_corrupt_prompt_attn")
|
208 |
+
corrupt_answer_attn = st.text_input("Corrupt Answer:", default_corrupt_answer, key="key2_corrupt_answer_attn")
|
209 |
+
|
210 |
+
if "attn_head_patch_out" not in st.session_state:
|
211 |
+
st.session_state.attn_head_patch_out = None
|
212 |
+
|
213 |
+
if st.button("Run model", key="key_button_attn_head_patch"):
|
214 |
+
fig = plot_attn_patch(clean_prompt=clean_prompt_attn, answer=clean_answer_attn, corrupt_prompt=corrupt_prompt_attn, corrupt_answer=corrupt_answer_attn)
|
215 |
+
st.session_state.attn_head_patch_out = fig
|
216 |
+
|
217 |
+
if st.session_state.attn_head_patch_out:
|
218 |
+
st.plotly_chart(st.session_state.attn_head_patch_out)
|
219 |
+
|
220 |
+
|
221 |
+
# Attention Head Visualization
|
222 |
+
|
223 |
+
st.header("Attention Pattern Visualization")
|
224 |
+
st.markdown("Powered by [CircuitsVis](https://github.com/alan-cooney/CircuitsVis)")
|
225 |
+
st.markdown("Enter a prompt, show attention patterns")
|
226 |
+
|
227 |
+
default_prompt_attn = "Her name was Alex Hart. Tomorrow at lunch time Alex"
|
228 |
+
prompt_attn = st.text_input("Prompt:", default_prompt_attn)
|
229 |
+
|
230 |
+
if "attn_html" not in st.session_state:
|
231 |
+
st.session_state.attn_html = None
|
232 |
+
|
233 |
+
if st.button("Run model", key="key_button_attention_head"):
|
234 |
+
_, cache = model.run_with_cache(prompt_attn)
|
235 |
+
st.session_state.attn_html = []
|
236 |
+
for layer in range(model.cfg.n_layers):
|
237 |
+
html = cv.attention.attention_patterns(tokens=model.to_str_tokens(prompt_attn),
|
238 |
+
attention=cache[f'blocks.{layer}.attn.hook_pattern'][0])
|
239 |
+
st.session_state.attn_html.append(html.show_code())
|
240 |
+
|
241 |
+
if st.session_state.attn_html:
|
242 |
+
for layer in range(len(st.session_state.attn_html)):
|
243 |
+
st.write(f"Attention patterns Layer {layer}:")
|
244 |
+
st.components.v1.html(st.session_state.attn_html[layer], height=500)
|
245 |
+
|
INFO.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Trafo Mech Int playground
|
2 |
+
|
3 |
+
Mechanistic Interpretability for everyone!
|
4 |
+
Website to visualise Transformer internals
|
5 |
+
|
6 |
+
By [Stefan Heimersheim](https://github.com/Stefan-Heimersheim/) and [Jonathan Ng](https://github.com/derpyplops).
|
7 |
+
|
8 |
+
[Mechanistic Interpretability Hackathon](https://itch.io/jam/mechint) submission.
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/neelnanda-io/TransformerLens/
|
2 |
+
torch
|
3 |
+
flask
|
4 |
+
gunicorn
|
5 |
+
plotly
|
6 |
+
circuitsvis
|
7 |
+
streamlit
|