Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
import os | |
import torch | |
import onnxruntime as ort | |
import time | |
from functools import wraps | |
import argparse | |
from PIL import Image | |
from io import BytesIO | |
import streamlit as st | |
# Parse command-line arguments | |
#parser = argparse.ArgumentParser() | |
#parser.add_argument("--mosaic", help="Enable mosaic processing mode", action="store_true") | |
#args = parser.parse_args() | |
#mosaic = args.mosaic # Set this based on your command line argument | |
# For streamlit use let's just set mosaic to "true", but I'm leavind the command-line arg here for anyone to use | |
mosaic = True | |
def center_crop(img, new_height, new_width): | |
height, width, _ = img.shape | |
start_x = width//2 - new_width//2 | |
start_y = height//2 - new_height//2 | |
return img[start_y:start_y+new_height, start_x:start_x+new_width] | |
def mosaic_crop(img, size): | |
height, width, _ = img.shape | |
padding_height = (size - height % size) % size | |
padding_width = (size - width % size) % size | |
padded_img = cv2.copyMakeBorder(img, 0, padding_height, 0, padding_width, cv2.BORDER_CONSTANT, value=[0, 0, 0]) | |
tiles = [padded_img[x:x+size, y:y+size] for x in range(0, padded_img.shape[0], size) for y in range(0, padded_img.shape[1], size)] | |
return tiles, padded_img.shape[0] // size, padded_img.shape[1] // size, padding_height, padding_width | |
def stitch_tiles(tiles, rows, cols, size): | |
return np.concatenate([np.concatenate([tiles[i*cols + j] for j in range(cols)], axis=1) for i in range(rows)], axis=0) | |
def timing_decorator(func): | |
def wrapper(*args, **kwargs): | |
start_time = time.time() | |
result = func(*args, **kwargs) | |
end_time = time.time() | |
duration = end_time - start_time | |
print(f"Function '{func.__name__}' took {duration:.6f} seconds") | |
return result | |
return wrapper | |
def process_image(session, img, colors, mosaic=False): | |
if not mosaic: | |
# Crop the center of the image to 416x416 pixels | |
img = center_crop(img, 416, 416) | |
blob = cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False) | |
# Perform inference | |
output = session.run(None, {session.get_inputs()[0].name: blob}) | |
# Assuming the output is a probability map where higher values indicate higher probability of a class | |
output_img = output[0].squeeze(0).transpose(1, 2, 0) | |
output_img = (output_img * 122).clip(0, 255).astype(np.uint8) | |
output_mask = output_img.max(axis=2) | |
output_mask_color = np.zeros((416, 416, 3), dtype=np.uint8) | |
# Assign specific colors to the classes in the mask | |
for class_idx in np.unique(output_mask): | |
if class_idx in colors: | |
output_mask_color[output_mask == class_idx] = colors[class_idx] | |
# Mask for the transparent class | |
transparent_mask = (output_mask == 122) | |
# Convert the mask to a 3-channel image | |
transparent_mask = np.stack([transparent_mask]*3, axis=-1) | |
# Where the mask is True, set the output color image to the input image | |
output_mask_color[transparent_mask] = img[transparent_mask] | |
# Make the colorful mask semi-transparent | |
overlay = cv2.addWeighted(img, 0.6, output_mask_color, 0.4, 0) | |
return overlay | |
st.title("OpenLander ONNX app") | |
st.write("Upload an image to process with the ONNX OpenLander model!") | |
st.write("Bear in mind that this model is **much less refined** than the embedded models at the moment.") | |
models = { | |
"Embedded model better trained: DeeplabV3+, MobilenetV2, 416px resolution": "20230608_onnx_416_mbnv2_dl3/end2end.onnx", | |
"Strange model with overfitting" : "test_240000.onnx", | |
"test model training system V2: DV3+, 40k, 416px": "20230613_40k_test_v2.onnx" | |
} | |
# Create a Streamlit radio button to select the desired model | |
selected_model = st.radio("Select a model", list(models.keys())) | |
# set cuda = true if you have an NVIDIA GPU | |
cuda = torch.cuda.is_available() | |
if cuda: | |
print("We have a GPU!") | |
providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider'] | |
# Get the selected model's path | |
model_path = models[selected_model] | |
session = ort.InferenceSession(model_path, providers=providers) | |
# Define colors for classes 0, 122 and 244 | |
colors = {0: (0, 0, 255), 122: (0, 0, 0), 244: (0, 255, 255)} # Red, Black, Yellow | |
def load_image(uploaded_file): | |
try: | |
image = Image.open(uploaded_file) | |
return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
except Exception as e: | |
st.write("Could not load image: ", e) | |
return None | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"]) | |
if uploaded_file is not None: | |
img = load_image(uploaded_file) | |
if img.shape[2] == 4: | |
img = img[:, :, :3] # Drop the alpha channel if it exists | |
img_processed = None | |
if st.button('Process'): | |
with st.spinner('Processing...'): | |
start = time.time() | |
if mosaic: | |
tiles, rows, cols, padding_height, padding_width = mosaic_crop(img, 416) | |
processed_tiles = [process_image(session, tile, colors, mosaic=True) for tile in tiles] | |
overlay = stitch_tiles(processed_tiles, rows, cols, 416) | |
# Crop the padding back out | |
overlay = overlay[:overlay.shape[0]-padding_height, :overlay.shape[1]-padding_width] | |
img_processed = overlay | |
else: | |
img_processed = process_image(session, img, colors) | |
end = time.time() | |
st.write(f"Processing time: {end - start} seconds") | |
st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption='Uploaded Image.', use_column_width=True) | |
if img_processed is not None: | |
st.image(cv2.cvtColor(img_processed, cv2.COLOR_BGR2RGB), caption='Processed Image.', use_column_width=True) | |
st.write("Red => obstacle ||| Yellow => Human obstacle ||| no color => clear for landing or delivery ") | |