StephanST commited on
Commit
4f5e042
1 Parent(s): b0717c7

adding better trained model

Browse files
20230608_onnx_416_mbnv2_dl3/20230607_082146.log ADDED
The diff for this file is too large to render. See raw diff
 
20230608_onnx_416_mbnv2_dl3/deploy.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "1.1.0",
3
+ "task": "Segmentor",
4
+ "models": [
5
+ {
6
+ "name": "depthwiseseparableaspp",
7
+ "net": "end2end.onnx",
8
+ "weights": "",
9
+ "backend": "onnxruntime",
10
+ "precision": "FP32",
11
+ "batch_size": 1,
12
+ "dynamic_shape": false
13
+ }
14
+ ],
15
+ "customs": []
16
+ }
20230608_onnx_416_mbnv2_dl3/detail.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "version": "1.1.0",
3
+ "codebase": {
4
+ "task": "Segmentation",
5
+ "codebase": "mmseg",
6
+ "version": "1.0.0",
7
+ "pth": "../mmsegmentation/work_dirs/mobilenet_deeplab_drone/iter_96000.pth",
8
+ "config": "../mmsegmentation/work_dirs/mobilenet_deeplab_drone/mobilenet_deeplab_drone.py"
9
+ },
10
+ "codebase_config": {
11
+ "type": "mmseg",
12
+ "task": "Segmentation",
13
+ "with_argmax": true
14
+ },
15
+ "onnx_config": {
16
+ "type": "onnx",
17
+ "export_params": true,
18
+ "keep_initializers_as_inputs": false,
19
+ "opset_version": 11,
20
+ "save_file": "end2end.onnx",
21
+ "input_names": [
22
+ "input"
23
+ ],
24
+ "output_names": [
25
+ "output"
26
+ ],
27
+ "input_shape": [
28
+ 416,
29
+ 416
30
+ ],
31
+ "optimize": true
32
+ },
33
+ "backend_config": {
34
+ "type": "onnxruntime"
35
+ },
36
+ "calib_config": {}
37
+ }
20230608_onnx_416_mbnv2_dl3/end2end.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c28c542c8c484c0c17e5d94afb9e9f4e85aa0c9b8a9cd28ae8ca0e7ff3e72e9
3
+ size 11185635
20230608_onnx_416_mbnv2_dl3/iter_96000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d551e8499ddd3fc34142a7947b34fb3d48decdec4033251b39e92394247207f3
3
+ size 37443597
20230608_onnx_416_mbnv2_dl3/mobilenet_deeplab_drone.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
2
+ data_preprocessor = dict(
3
+ type='SegDataPreProcessor',
4
+ mean=[123.675, 116.28, 103.53],
5
+ std=[58.395, 57.12, 57.375],
6
+ bgr_to_rgb=True,
7
+ pad_val=0,
8
+ seg_pad_val=255,
9
+ size=(416, 416))
10
+ model = dict(
11
+ type='EncoderDecoder',
12
+ data_preprocessor=dict(
13
+ type='SegDataPreProcessor',
14
+ mean=[123.675, 116.28, 103.53],
15
+ std=[58.395, 57.12, 57.375],
16
+ bgr_to_rgb=True,
17
+ pad_val=0,
18
+ seg_pad_val=255,
19
+ size=(416, 416)),
20
+ pretrained='mmcls://mobilenet_v2',
21
+ backbone=dict(
22
+ type='MobileNetV2',
23
+ widen_factor=1.0,
24
+ strides=(1, 2, 2, 1, 1, 1, 1),
25
+ dilations=(1, 1, 1, 2, 2, 4, 4),
26
+ out_indices=(1, 2, 4, 6),
27
+ norm_cfg=dict(type='SyncBN', requires_grad=True)),
28
+ decode_head=dict(
29
+ type='DepthwiseSeparableASPPHead',
30
+ in_channels=320,
31
+ in_index=3,
32
+ channels=128,
33
+ dilations=(1, 12, 24, 36),
34
+ c1_in_channels=24,
35
+ c1_channels=12,
36
+ dropout_ratio=0.1,
37
+ num_classes=3,
38
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
42
+ auxiliary_head=dict(
43
+ type='FCNHead',
44
+ in_channels=96,
45
+ in_index=2,
46
+ channels=64,
47
+ num_convs=1,
48
+ concat_input=False,
49
+ dropout_ratio=0.1,
50
+ num_classes=3,
51
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
52
+ align_corners=False,
53
+ loss_decode=dict(
54
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
55
+ train_cfg=dict(),
56
+ test_cfg=dict(mode='whole'))
57
+ dataset_type = 'DroneDataset'
58
+ data_root = 'data/drone_custom_dataset'
59
+ crop_size = (416, 416)
60
+ train_pipeline = [
61
+ dict(type='LoadImageFromFile'),
62
+ dict(type='LoadAnnotations'),
63
+ dict(
64
+ type='RandomResize',
65
+ scale=(2048, 416),
66
+ ratio_range=(0.5, 2.0),
67
+ keep_ratio=True),
68
+ dict(type='RandomCrop', crop_size=(416, 416), cat_max_ratio=0.75),
69
+ dict(type='RandomFlip', prob=0.5),
70
+ dict(type='PhotoMetricDistortion'),
71
+ dict(type='PackSegInputs')
72
+ ]
73
+ test_pipeline = [
74
+ dict(type='LoadImageFromFile'),
75
+ dict(type='Resize', scale=(2048, 416), keep_ratio=True),
76
+ dict(type='LoadAnnotations'),
77
+ dict(type='PackSegInputs')
78
+ ]
79
+ img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
80
+ tta_pipeline = [
81
+ dict(type='LoadImageFromFile', backend_args=None),
82
+ dict(
83
+ type='TestTimeAug',
84
+ transforms=[[{
85
+ 'type': 'Resize',
86
+ 'scale_factor': 0.5,
87
+ 'keep_ratio': True
88
+ }, {
89
+ 'type': 'Resize',
90
+ 'scale_factor': 0.75,
91
+ 'keep_ratio': True
92
+ }, {
93
+ 'type': 'Resize',
94
+ 'scale_factor': 1.0,
95
+ 'keep_ratio': True
96
+ }, {
97
+ 'type': 'Resize',
98
+ 'scale_factor': 1.25,
99
+ 'keep_ratio': True
100
+ }, {
101
+ 'type': 'Resize',
102
+ 'scale_factor': 1.5,
103
+ 'keep_ratio': True
104
+ }, {
105
+ 'type': 'Resize',
106
+ 'scale_factor': 1.75,
107
+ 'keep_ratio': True
108
+ }],
109
+ [{
110
+ 'type': 'RandomFlip',
111
+ 'prob': 0.0,
112
+ 'direction': 'horizontal'
113
+ }, {
114
+ 'type': 'RandomFlip',
115
+ 'prob': 1.0,
116
+ 'direction': 'horizontal'
117
+ }], [{
118
+ 'type': 'LoadAnnotations'
119
+ }], [{
120
+ 'type': 'PackSegInputs'
121
+ }]])
122
+ ]
123
+ train_dataloader = dict(
124
+ batch_size=24,
125
+ num_workers=1,
126
+ persistent_workers=True,
127
+ sampler=dict(type='InfiniteSampler', shuffle=True),
128
+ dataset=dict(
129
+ type='DroneDataset',
130
+ data_root='data/drone_custom_dataset',
131
+ data_prefix=dict(img_path='images', seg_map_path='anns'),
132
+ ann_file='train.txt',
133
+ pipeline=[
134
+ dict(type='LoadImageFromFile'),
135
+ dict(type='LoadAnnotations'),
136
+ dict(
137
+ type='RandomResize',
138
+ scale=(2048, 416),
139
+ ratio_range=(0.5, 2.0),
140
+ keep_ratio=True),
141
+ dict(type='RandomCrop', crop_size=(416, 416), cat_max_ratio=0.75),
142
+ dict(type='RandomFlip', prob=0.5),
143
+ dict(type='PhotoMetricDistortion'),
144
+ dict(type='PackSegInputs')
145
+ ]))
146
+ val_dataloader = dict(
147
+ batch_size=1,
148
+ num_workers=4,
149
+ persistent_workers=True,
150
+ sampler=dict(type='DefaultSampler', shuffle=False),
151
+ dataset=dict(
152
+ type='DroneDataset',
153
+ data_root='data/drone_custom_dataset',
154
+ data_prefix=dict(img_path='images', seg_map_path='anns'),
155
+ ann_file='val.txt',
156
+ pipeline=[
157
+ dict(type='LoadImageFromFile'),
158
+ dict(type='Resize', scale=(2048, 416), keep_ratio=True),
159
+ dict(type='LoadAnnotations'),
160
+ dict(type='PackSegInputs')
161
+ ]))
162
+ test_dataloader = dict(
163
+ batch_size=1,
164
+ num_workers=4,
165
+ persistent_workers=True,
166
+ sampler=dict(type='DefaultSampler', shuffle=False),
167
+ dataset=dict(
168
+ type='DroneDataset',
169
+ data_root='data/drone_custom_dataset',
170
+ data_prefix=dict(img_path='images', seg_map_path='anns'),
171
+ ann_file='val.txt',
172
+ pipeline=[
173
+ dict(type='LoadImageFromFile'),
174
+ dict(type='Resize', scale=(2048, 416), keep_ratio=True),
175
+ dict(type='LoadAnnotations'),
176
+ dict(type='PackSegInputs')
177
+ ]))
178
+ val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
179
+ test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
180
+ default_scope = 'mmseg'
181
+ env_cfg = dict(
182
+ cudnn_benchmark=True,
183
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
184
+ dist_cfg=dict(backend='nccl'))
185
+ vis_backends = [dict(type='LocalVisBackend')]
186
+ visualizer = dict(
187
+ type='SegLocalVisualizer',
188
+ vis_backends=[dict(type='LocalVisBackend')],
189
+ name='visualizer')
190
+ log_processor = dict(by_epoch=False)
191
+ log_level = 'INFO'
192
+ load_from = None
193
+ resume = False
194
+ tta_model = dict(type='SegTTAModel')
195
+ optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
196
+ optim_wrapper = dict(
197
+ type='OptimWrapper',
198
+ optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
199
+ clip_grad=None)
200
+ param_scheduler = [
201
+ dict(
202
+ type='PolyLR',
203
+ eta_min=0.0001,
204
+ power=0.9,
205
+ begin=0,
206
+ end=240000,
207
+ by_epoch=False)
208
+ ]
209
+ train_cfg = dict(
210
+ type='IterBasedTrainLoop', max_iters=240000, val_interval=24000)
211
+ val_cfg = dict(type='ValLoop')
212
+ test_cfg = dict(type='TestLoop')
213
+ default_hooks = dict(
214
+ timer=dict(type='IterTimerHook'),
215
+ logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
216
+ param_scheduler=dict(type='ParamSchedulerHook'),
217
+ checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=24000),
218
+ sampler_seed=dict(type='DistSamplerSeedHook'),
219
+ visualization=dict(type='SegVisualizationHook'))
220
+ launcher = 'pytorch'
221
+ work_dir = './work_dirs/mobilenet_deeplab_drone'
20230608_onnx_416_mbnv2_dl3/pipeline.json ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "pipeline": {
3
+ "input": [
4
+ "img"
5
+ ],
6
+ "output": [
7
+ "post_output"
8
+ ],
9
+ "tasks": [
10
+ {
11
+ "type": "Task",
12
+ "module": "Transform",
13
+ "name": "Preprocess",
14
+ "input": [
15
+ "img"
16
+ ],
17
+ "output": [
18
+ "prep_output"
19
+ ],
20
+ "transforms": [
21
+ {
22
+ "type": "LoadImageFromFile"
23
+ },
24
+ {
25
+ "type": "Resize",
26
+ "keep_ratio": false,
27
+ "size": [
28
+ 416,
29
+ 416
30
+ ]
31
+ },
32
+ {
33
+ "type": "Normalize",
34
+ "mean": [
35
+ 123.675,
36
+ 116.28,
37
+ 103.53
38
+ ],
39
+ "std": [
40
+ 58.395,
41
+ 57.12,
42
+ 57.375
43
+ ],
44
+ "to_rgb": true
45
+ },
46
+ {
47
+ "type": "ImageToTensor",
48
+ "keys": [
49
+ "img"
50
+ ]
51
+ },
52
+ {
53
+ "type": "Collect",
54
+ "keys": [
55
+ "img"
56
+ ],
57
+ "meta_keys": [
58
+ "img_shape",
59
+ "pad_shape",
60
+ "ori_shape",
61
+ "img_norm_cfg",
62
+ "scale_factor"
63
+ ]
64
+ }
65
+ ]
66
+ },
67
+ {
68
+ "name": "depthwiseseparableaspp",
69
+ "type": "Task",
70
+ "module": "Net",
71
+ "is_batched": false,
72
+ "input": [
73
+ "prep_output"
74
+ ],
75
+ "output": [
76
+ "infer_output"
77
+ ],
78
+ "input_map": {
79
+ "img": "input"
80
+ },
81
+ "output_map": {}
82
+ },
83
+ {
84
+ "type": "Task",
85
+ "module": "mmseg",
86
+ "name": "postprocess",
87
+ "component": "ResizeMask",
88
+ "params": {
89
+ "type": "DepthwiseSeparableASPPHead",
90
+ "in_channels": 320,
91
+ "in_index": 3,
92
+ "channels": 128,
93
+ "dilations": [
94
+ 1,
95
+ 12,
96
+ 24,
97
+ 36
98
+ ],
99
+ "c1_in_channels": 24,
100
+ "c1_channels": 12,
101
+ "dropout_ratio": 0.1,
102
+ "num_classes": 3,
103
+ "norm_cfg": {
104
+ "type": "SyncBN",
105
+ "requires_grad": true
106
+ },
107
+ "align_corners": false,
108
+ "loss_decode": {
109
+ "type": "CrossEntropyLoss",
110
+ "use_sigmoid": false,
111
+ "loss_weight": 1.0
112
+ },
113
+ "with_argmax": true
114
+ },
115
+ "output": [
116
+ "post_output"
117
+ ],
118
+ "input": [
119
+ "prep_output",
120
+ "infer_output"
121
+ ]
122
+ }
123
+ ]
124
+ }
125
+ }
20230608_onnx_416_mbnv2_dl3/vis_data/20230607_082146.json ADDED
The diff for this file is too large to render. See raw diff
 
20230608_onnx_416_mbnv2_dl3/vis_data/config.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
2
+ data_preprocessor = dict(
3
+ type='SegDataPreProcessor',
4
+ mean=[123.675, 116.28, 103.53],
5
+ std=[58.395, 57.12, 57.375],
6
+ bgr_to_rgb=True,
7
+ pad_val=0,
8
+ seg_pad_val=255,
9
+ size=(416, 416))
10
+ model = dict(
11
+ type='EncoderDecoder',
12
+ data_preprocessor=dict(
13
+ type='SegDataPreProcessor',
14
+ mean=[123.675, 116.28, 103.53],
15
+ std=[58.395, 57.12, 57.375],
16
+ bgr_to_rgb=True,
17
+ pad_val=0,
18
+ seg_pad_val=255,
19
+ size=(416, 416)),
20
+ pretrained='mmcls://mobilenet_v2',
21
+ backbone=dict(
22
+ type='MobileNetV2',
23
+ widen_factor=1.0,
24
+ strides=(1, 2, 2, 1, 1, 1, 1),
25
+ dilations=(1, 1, 1, 2, 2, 4, 4),
26
+ out_indices=(1, 2, 4, 6),
27
+ norm_cfg=dict(type='SyncBN', requires_grad=True)),
28
+ decode_head=dict(
29
+ type='DepthwiseSeparableASPPHead',
30
+ in_channels=320,
31
+ in_index=3,
32
+ channels=128,
33
+ dilations=(1, 12, 24, 36),
34
+ c1_in_channels=24,
35
+ c1_channels=12,
36
+ dropout_ratio=0.1,
37
+ num_classes=3,
38
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
42
+ auxiliary_head=dict(
43
+ type='FCNHead',
44
+ in_channels=96,
45
+ in_index=2,
46
+ channels=64,
47
+ num_convs=1,
48
+ concat_input=False,
49
+ dropout_ratio=0.1,
50
+ num_classes=3,
51
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
52
+ align_corners=False,
53
+ loss_decode=dict(
54
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
55
+ train_cfg=dict(),
56
+ test_cfg=dict(mode='whole'))
57
+ dataset_type = 'DroneDataset'
58
+ data_root = 'data/drone_custom_dataset'
59
+ crop_size = (416, 416)
60
+ train_pipeline = [
61
+ dict(type='LoadImageFromFile'),
62
+ dict(type='LoadAnnotations'),
63
+ dict(
64
+ type='RandomResize',
65
+ scale=(2048, 416),
66
+ ratio_range=(0.5, 2.0),
67
+ keep_ratio=True),
68
+ dict(type='RandomCrop', crop_size=(416, 416), cat_max_ratio=0.75),
69
+ dict(type='RandomFlip', prob=0.5),
70
+ dict(type='PhotoMetricDistortion'),
71
+ dict(type='PackSegInputs')
72
+ ]
73
+ test_pipeline = [
74
+ dict(type='LoadImageFromFile'),
75
+ dict(type='Resize', scale=(2048, 416), keep_ratio=True),
76
+ dict(type='LoadAnnotations'),
77
+ dict(type='PackSegInputs')
78
+ ]
79
+ img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
80
+ tta_pipeline = [
81
+ dict(type='LoadImageFromFile', backend_args=None),
82
+ dict(
83
+ type='TestTimeAug',
84
+ transforms=[[{
85
+ 'type': 'Resize',
86
+ 'scale_factor': 0.5,
87
+ 'keep_ratio': True
88
+ }, {
89
+ 'type': 'Resize',
90
+ 'scale_factor': 0.75,
91
+ 'keep_ratio': True
92
+ }, {
93
+ 'type': 'Resize',
94
+ 'scale_factor': 1.0,
95
+ 'keep_ratio': True
96
+ }, {
97
+ 'type': 'Resize',
98
+ 'scale_factor': 1.25,
99
+ 'keep_ratio': True
100
+ }, {
101
+ 'type': 'Resize',
102
+ 'scale_factor': 1.5,
103
+ 'keep_ratio': True
104
+ }, {
105
+ 'type': 'Resize',
106
+ 'scale_factor': 1.75,
107
+ 'keep_ratio': True
108
+ }],
109
+ [{
110
+ 'type': 'RandomFlip',
111
+ 'prob': 0.0,
112
+ 'direction': 'horizontal'
113
+ }, {
114
+ 'type': 'RandomFlip',
115
+ 'prob': 1.0,
116
+ 'direction': 'horizontal'
117
+ }], [{
118
+ 'type': 'LoadAnnotations'
119
+ }], [{
120
+ 'type': 'PackSegInputs'
121
+ }]])
122
+ ]
123
+ train_dataloader = dict(
124
+ batch_size=24,
125
+ num_workers=1,
126
+ persistent_workers=True,
127
+ sampler=dict(type='InfiniteSampler', shuffle=True),
128
+ dataset=dict(
129
+ type='DroneDataset',
130
+ data_root='data/drone_custom_dataset',
131
+ data_prefix=dict(img_path='images', seg_map_path='anns'),
132
+ ann_file='train.txt',
133
+ pipeline=[
134
+ dict(type='LoadImageFromFile'),
135
+ dict(type='LoadAnnotations'),
136
+ dict(
137
+ type='RandomResize',
138
+ scale=(2048, 416),
139
+ ratio_range=(0.5, 2.0),
140
+ keep_ratio=True),
141
+ dict(type='RandomCrop', crop_size=(416, 416), cat_max_ratio=0.75),
142
+ dict(type='RandomFlip', prob=0.5),
143
+ dict(type='PhotoMetricDistortion'),
144
+ dict(type='PackSegInputs')
145
+ ]))
146
+ val_dataloader = dict(
147
+ batch_size=1,
148
+ num_workers=4,
149
+ persistent_workers=True,
150
+ sampler=dict(type='DefaultSampler', shuffle=False),
151
+ dataset=dict(
152
+ type='DroneDataset',
153
+ data_root='data/drone_custom_dataset',
154
+ data_prefix=dict(img_path='images', seg_map_path='anns'),
155
+ ann_file='val.txt',
156
+ pipeline=[
157
+ dict(type='LoadImageFromFile'),
158
+ dict(type='Resize', scale=(2048, 416), keep_ratio=True),
159
+ dict(type='LoadAnnotations'),
160
+ dict(type='PackSegInputs')
161
+ ]))
162
+ test_dataloader = dict(
163
+ batch_size=1,
164
+ num_workers=4,
165
+ persistent_workers=True,
166
+ sampler=dict(type='DefaultSampler', shuffle=False),
167
+ dataset=dict(
168
+ type='DroneDataset',
169
+ data_root='data/drone_custom_dataset',
170
+ data_prefix=dict(img_path='images', seg_map_path='anns'),
171
+ ann_file='val.txt',
172
+ pipeline=[
173
+ dict(type='LoadImageFromFile'),
174
+ dict(type='Resize', scale=(2048, 416), keep_ratio=True),
175
+ dict(type='LoadAnnotations'),
176
+ dict(type='PackSegInputs')
177
+ ]))
178
+ val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
179
+ test_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
180
+ default_scope = 'mmseg'
181
+ env_cfg = dict(
182
+ cudnn_benchmark=True,
183
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
184
+ dist_cfg=dict(backend='nccl'))
185
+ vis_backends = [dict(type='LocalVisBackend')]
186
+ visualizer = dict(
187
+ type='SegLocalVisualizer',
188
+ vis_backends=[dict(type='LocalVisBackend')],
189
+ name='visualizer')
190
+ log_processor = dict(by_epoch=False)
191
+ log_level = 'INFO'
192
+ load_from = None
193
+ resume = False
194
+ tta_model = dict(type='SegTTAModel')
195
+ optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
196
+ optim_wrapper = dict(
197
+ type='OptimWrapper',
198
+ optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
199
+ clip_grad=None)
200
+ param_scheduler = [
201
+ dict(
202
+ type='PolyLR',
203
+ eta_min=0.0001,
204
+ power=0.9,
205
+ begin=0,
206
+ end=240000,
207
+ by_epoch=False)
208
+ ]
209
+ train_cfg = dict(
210
+ type='IterBasedTrainLoop', max_iters=240000, val_interval=24000)
211
+ val_cfg = dict(type='ValLoop')
212
+ test_cfg = dict(type='TestLoop')
213
+ default_hooks = dict(
214
+ timer=dict(type='IterTimerHook'),
215
+ logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
216
+ param_scheduler=dict(type='ParamSchedulerHook'),
217
+ checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=24000),
218
+ sampler_seed=dict(type='DistSamplerSeedHook'),
219
+ visualization=dict(type='SegVisualizationHook'))
220
+ launcher = 'pytorch'
221
+ work_dir = './work_dirs/mobilenet_deeplab_drone'
20230608_onnx_416_mbnv2_dl3/vis_data/scalars.json ADDED
The diff for this file is too large to render. See raw diff