Spaces:
Runtime error
Runtime error
StephaneBah
commited on
Commit
•
b6ec593
1
Parent(s):
08aeadf
v2
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from PIL import Image
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
import matplotlib.pyplot as plt
|
|
|
7 |
|
8 |
# Fonctions de traitement d'image
|
9 |
def load_image(image):
|
@@ -22,98 +23,134 @@ def binarize_image(image, threshold):
|
|
22 |
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY)
|
23 |
return Image.fromarray(binary)
|
24 |
|
25 |
-
def resize_image(image, width
|
|
|
|
|
26 |
return image.resize((width, height))
|
27 |
|
28 |
def rotate_image(image, angle):
|
29 |
return image.rotate(angle)
|
30 |
|
31 |
def show_histogram(image):
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
plt.
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
image = np.array(image)
|
42 |
filtered = cv2.GaussianBlur(image, shape, 0)
|
43 |
return Image.fromarray(filtered)
|
44 |
|
45 |
-
def mean_filter(image, shape=(3,3)):
|
46 |
image = np.array(image)
|
47 |
filtered = cv2.blur(image, shape)
|
48 |
return Image.fromarray(filtered)
|
49 |
|
50 |
def sobel_edges(image, k=5):
|
|
|
51 |
image = np.array(image.convert('L'))
|
52 |
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=k)
|
53 |
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=k)
|
54 |
sobel_combined = cv2.magnitude(sobel_x, sobel_y)
|
55 |
return Image.fromarray(np.uint8(sobel_combined))
|
56 |
|
57 |
-
def erosion(image,
|
|
|
58 |
image = np.array(image.convert("L"))
|
59 |
-
kernel = np.ones(
|
60 |
eroded_image = cv2.erode(image, kernel, iterations=iterations)
|
61 |
return Image.fromarray(eroded_image)
|
62 |
|
63 |
-
def dilatation(image,
|
|
|
64 |
image = np.array(image.convert("L"))
|
65 |
-
kernel = np.ones(
|
66 |
dilated_image = cv2.dilate(image, kernel, iterations=iterations)
|
67 |
return Image.fromarray(dilated_image)
|
68 |
|
69 |
|
70 |
-
# Ajoutez d'autres fonctions pour l'histogramme, le filtrage, Sobel, etc.
|
71 |
-
|
72 |
# Interface Gradio
|
73 |
-
def image_processing(image, operation, threshold=128, width=100, height=100, angle=30,
|
|
|
74 |
if operation == "Négatif":
|
75 |
-
|
76 |
elif operation == "Image en Gris":
|
77 |
-
|
78 |
elif operation == "Binarisation":
|
79 |
-
|
80 |
elif operation == "Redimensionner":
|
81 |
-
|
82 |
elif operation == "Rotation":
|
83 |
-
|
84 |
-
elif operation == 'Histogramme de Gris':
|
85 |
-
return show_histogram(image)
|
86 |
elif operation == 'Filtre Gaussien':
|
87 |
-
|
88 |
elif operation == 'Filtre Moyen':
|
89 |
-
|
90 |
elif operation == 'Sobel Edges Extraction':
|
91 |
-
|
92 |
elif operation == 'Erosion':
|
93 |
-
|
94 |
elif operation == 'Dilatation':
|
95 |
-
|
96 |
-
|
97 |
-
return
|
98 |
|
99 |
# Interface Gradio
|
100 |
with gr.Blocks() as demo:
|
101 |
-
gr.Markdown("##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
with gr.Row():
|
104 |
-
|
105 |
-
|
106 |
-
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=True)
|
107 |
-
width = gr.Number(value=100, label="Largeur", visible=True)
|
108 |
-
height = gr.Number(value=100, label="Hauteur", visible=True)
|
109 |
-
angle = gr.Slider(0, 360, 30, label="Angle de Rotation", visible=True)
|
110 |
-
k = gr.Number(value=5, label="k de Sobel", visible=True)
|
111 |
-
iterations = gr.Number(value=3, label="Nombre d'iteration pour les transformations morphologiques", visible=True)
|
112 |
with gr.Row():
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
submit_button = gr.Button("Appliquer")
|
116 |
-
submit_button.click(image_processing, inputs=[image_input, operation, threshold, width, height, angle], outputs=image_output)
|
117 |
|
118 |
# Lancer l'application Gradio
|
119 |
demo.launch()
|
|
|
4 |
import numpy as np
|
5 |
import cv2
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
import io
|
8 |
|
9 |
# Fonctions de traitement d'image
|
10 |
def load_image(image):
|
|
|
23 |
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY)
|
24 |
return Image.fromarray(binary)
|
25 |
|
26 |
+
def resize_image(image, width, height):
|
27 |
+
width = int(width)
|
28 |
+
height = int(height)
|
29 |
return image.resize((width, height))
|
30 |
|
31 |
def rotate_image(image, angle):
|
32 |
return image.rotate(angle)
|
33 |
|
34 |
def show_histogram(image):
|
35 |
+
image_gray = image.convert("L")
|
36 |
+
# Obtenir les données de l'image en niveaux de gris
|
37 |
+
image_array = np.array(image_gray)
|
38 |
+
# Calculer l'histogramme
|
39 |
+
hist, bins = np.histogram(image_array.flatten(), bins=256, range=[0,256])
|
40 |
+
# Créer une figure pour l'affichage de l'histogramme
|
41 |
+
fig, ax = plt.subplots()
|
42 |
+
ax.plot(hist, color='blue')
|
43 |
+
ax.set_xlim([0, 256])
|
44 |
+
ax.set_title('Histogram of Image')
|
45 |
+
# Enregistrer l'histogramme dans un buffer
|
46 |
+
buf = io.BytesIO()
|
47 |
+
plt.savefig(buf, format='png')
|
48 |
+
buf.seek(0)
|
49 |
+
# Ouvrir l'image du buffer en utilisant PIL
|
50 |
+
hist_image = Image.open(buf)
|
51 |
+
return hist_image
|
52 |
+
|
53 |
+
def gaussian_filter(image, shape=(3, 3)):
|
54 |
image = np.array(image)
|
55 |
filtered = cv2.GaussianBlur(image, shape, 0)
|
56 |
return Image.fromarray(filtered)
|
57 |
|
58 |
+
def mean_filter(image, shape=(3, 3)):
|
59 |
image = np.array(image)
|
60 |
filtered = cv2.blur(image, shape)
|
61 |
return Image.fromarray(filtered)
|
62 |
|
63 |
def sobel_edges(image, k=5):
|
64 |
+
k = int(k)
|
65 |
image = np.array(image.convert('L'))
|
66 |
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=k)
|
67 |
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=k)
|
68 |
sobel_combined = cv2.magnitude(sobel_x, sobel_y)
|
69 |
return Image.fromarray(np.uint8(sobel_combined))
|
70 |
|
71 |
+
def erosion(image, iterations=3, shape=(5, 5)):
|
72 |
+
iterations = int(iterations)
|
73 |
image = np.array(image.convert("L"))
|
74 |
+
kernel = np.ones(shape, np.uint8)
|
75 |
eroded_image = cv2.erode(image, kernel, iterations=iterations)
|
76 |
return Image.fromarray(eroded_image)
|
77 |
|
78 |
+
def dilatation(image, iterations=3, shape=(5, 5)):
|
79 |
+
iterations = int(iterations)
|
80 |
image = np.array(image.convert("L"))
|
81 |
+
kernel = np.ones(shape, np.uint8)
|
82 |
dilated_image = cv2.dilate(image, kernel, iterations=iterations)
|
83 |
return Image.fromarray(dilated_image)
|
84 |
|
85 |
|
|
|
|
|
86 |
# Interface Gradio
|
87 |
+
def image_processing(image, operation, modified_image, threshold=128, width=100, height=100, angle=30, k=5, iterations=3):
|
88 |
+
current_image = modified_image if modified_image is not None else image
|
89 |
if operation == "Négatif":
|
90 |
+
current_image = apply_negative(image)
|
91 |
elif operation == "Image en Gris":
|
92 |
+
current_image = grayscale(image)
|
93 |
elif operation == "Binarisation":
|
94 |
+
current_image = binarize_image(image, threshold)
|
95 |
elif operation == "Redimensionner":
|
96 |
+
current_image = resize_image(image, width, height)
|
97 |
elif operation == "Rotation":
|
98 |
+
current_image = rotate_image(image, angle)
|
|
|
|
|
99 |
elif operation == 'Filtre Gaussien':
|
100 |
+
current_image = gaussian_filter(image)
|
101 |
elif operation == 'Filtre Moyen':
|
102 |
+
current_image = mean_filter(image)
|
103 |
elif operation == 'Sobel Edges Extraction':
|
104 |
+
current_image = sobel_edges(image, k)
|
105 |
elif operation == 'Erosion':
|
106 |
+
current_image = erosion(image, iterations)
|
107 |
elif operation == 'Dilatation':
|
108 |
+
current_image = dilatation(image, iterations)
|
109 |
+
|
110 |
+
return current_image, show_histogram(current_image)
|
111 |
|
112 |
# Interface Gradio
|
113 |
with gr.Blocks() as demo:
|
114 |
+
gr.Markdown("## Traitement d'Images")
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
operation = gr.Radio(["Négatif", "Image en Gris", "Binarisation", "Redimensionner", "Rotation", 'Filtre Gaussien',
|
118 |
+
'Filtre Moyen', 'Sobel Edges Extraction', 'Erosion', 'Dilatation'], label="Opération", value="Négatif")
|
119 |
+
with gr.Row():
|
120 |
+
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=False)
|
121 |
+
width = gr.Number(value=100, label="Largeur", visible=False)
|
122 |
+
height = gr.Number(value=100, label="Hauteur", visible=False)
|
123 |
+
angle = gr.Slider(0, 360, 30, label="Angle de Rotation", visible=False)
|
124 |
+
k = gr.Number(value=5, label="k de Sobel", visible=False)
|
125 |
+
iterations = gr.Number(value=3, label="Nombre d'iteration pour les transformations morphologiques", visible=False)
|
126 |
+
|
127 |
+
def update_ui(operation):
|
128 |
+
# Mise à jour dynamique de la visibilité des champs
|
129 |
+
return {
|
130 |
+
threshold: gr.update(visible=operation == "Binarisation"),
|
131 |
+
width: gr.update(visible=operation == "Redimensionner"),
|
132 |
+
height: gr.update(visible=operation == "Redimensionner"),
|
133 |
+
angle: gr.update(visible=operation == "Rotation"),
|
134 |
+
k: gr.update(visible=operation == "Sobel Edges Extraction"),
|
135 |
+
iterations: gr.update(visible=operation in ["Erosion", "Dilatation"])
|
136 |
+
}
|
137 |
+
|
138 |
+
operation.change(update_ui, operation, [threshold, width, height, angle, k, iterations])
|
139 |
|
140 |
with gr.Row():
|
141 |
+
image_input = gr.Image(type="pil", label="Charger Image", scale=2)
|
142 |
+
original_hist = gr.Image(label="Histogramme de l'Image Originale", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
with gr.Row():
|
144 |
+
image_output = gr.Image(type="pil", label="Image Modifiée", interactive=False)
|
145 |
+
modified_hist = gr.Image(label="Histogramme de l'Image Modifiée", scale=1)
|
146 |
+
|
147 |
+
# Afficher l'histogramme de l'image d'entrée
|
148 |
+
def s_hist(image):
|
149 |
+
return show_histogram(image)
|
150 |
+
image_input.change(s_hist, inputs=image_input, outputs=original_hist)
|
151 |
+
|
152 |
submit_button = gr.Button("Appliquer")
|
153 |
+
submit_button.click(image_processing, inputs=[image_input, operation, image_output, threshold, width, height, angle, k, iterations], outputs=[image_output, modified_hist])
|
154 |
|
155 |
# Lancer l'application Gradio
|
156 |
demo.launch()
|