Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
import soundfile as sf | |
from xcodec2.modeling_xcodec2 import XCodec2Model | |
import torchaudio | |
import gradio as gr | |
import tempfile | |
import os | |
api_key = os.getenv("HF_TOKEN") | |
from huggingface_hub import login | |
login(token=api_key) | |
llasa_3b ='Steveeeeeeen/Llasagna-v0.1' | |
tokenizer = AutoTokenizer.from_pretrained(llasa_3b) | |
model = AutoModelForCausalLM.from_pretrained( | |
llasa_3b, | |
trust_remote_code=True, | |
device_map='cuda', | |
) | |
model_path = "srinivasbilla/xcodec2" | |
Codec_model = XCodec2Model.from_pretrained(model_path) | |
Codec_model.eval().cuda() | |
whisper_turbo_pipe = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-large-v3-turbo", | |
torch_dtype=torch.float16, | |
device='cuda', | |
) | |
SPEAKERS = { | |
"Female 1": { | |
"path": "speakers/female_0.wav", | |
"transcript": "e lo stesso alessi che andò ad aprire non riconobbe antoni il quale tornava con la sporta sotto il braccio tanto era mutato coperto di polvere e con la barba lungacome fu entrato e si fu messo a sedere in un cantuccio non osavano quasi fargli festa.", | |
}, | |
"Male 1": { | |
"path": "speakers/male_0.wav", | |
"transcript": "cadeva la sera smorto in un gran silenzio poi si udirono lontano le chiese di francoforte che scampanavanola bella vigilia di natale che mi mandò dome dio balbettò compare cosimo con la lingua grossa dello spasimo", | |
}, | |
"Female 2": { | |
"path": "speakers/female_2.wav", | |
"transcript": "la zia baronessa che aveva il cacciatore con le penne i cugini del babbo che possedevano cinque feudi l'uno attaccato all'altro nello stato di caltagirone", | |
}, | |
"Male 2": { | |
"path": "speakers/male_1.wav", | |
"transcript": "solo è abbandonato come uno che non ha né possiede chi vi siete trovato accanto nel bisogno ditelo vostra figlia vi manda soltanto belle parole", | |
}, | |
} | |
banner_url = "https://huggingface.co/datasets/Steveeeeeeen/random_images/resolve/main/llasagna.png" | |
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 150px; max-width: 300px;"> </div>' | |
def preview_speaker(display_name): | |
"""Returns the audio and transcript for preview""" | |
speaker_name = speaker_display_dict[display_name] | |
if speaker_name in SPEAKERS: | |
waveform, sample_rate = torchaudio.load(SPEAKERS[speaker_name]["path"]) | |
return (sample_rate, waveform[0].numpy()), SPEAKERS[speaker_name]["transcript"] | |
return None, "" | |
def ids_to_speech_tokens(speech_ids): | |
speech_tokens_str = [] | |
for speech_id in speech_ids: | |
speech_tokens_str.append(f"<|s_{speech_id}|>") | |
return speech_tokens_str | |
def extract_speech_ids(speech_tokens_str): | |
speech_ids = [] | |
for token_str in speech_tokens_str: | |
if token_str.startswith('<|s_') and token_str.endswith('|>'): | |
num_str = token_str[4:-2] | |
num = int(num_str) | |
speech_ids.append(num) | |
else: | |
print(f"Unexpected token: {token_str}") | |
return speech_ids | |
def infer(sample_audio_path, target_text, progress=gr.Progress()): | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
progress(0, 'Loading and trimming audio...') | |
waveform, sample_rate = torchaudio.load(sample_audio_path) | |
if len(waveform[0])/sample_rate > 15: | |
gr.Warning("Trimming audio to first 15secs.") | |
waveform = waveform[:, :sample_rate*15] | |
# Check if the audio is stereo (i.e., has more than one channel) | |
if waveform.size(0) > 1: | |
# Convert stereo to mono by averaging the channels | |
waveform_mono = torch.mean(waveform, dim=0, keepdim=True) | |
else: | |
# If already mono, just use the original waveform | |
waveform_mono = waveform | |
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono) | |
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip() | |
progress(0.5, 'Transcribed! Generating speech...') | |
if len(target_text) == 0: | |
return None | |
elif len(target_text) > 300: | |
gr.Warning("Text is too long. Please keep it under 300 characters.") | |
target_text = target_text[:300] | |
input_text = prompt_text + ' ' + target_text | |
#TTS start! | |
with torch.no_grad(): | |
# Encode the prompt wav | |
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav) | |
vq_code_prompt = vq_code_prompt[0,0,:] | |
# Convert int 12345 to token <|s_12345|> | |
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt) | |
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>" | |
# Tokenize the text and the speech prefix | |
chat = [ | |
{"role": "user", "content": "Convert the text to speech:" + formatted_text}, | |
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)} | |
] | |
input_ids = tokenizer.apply_chat_template( | |
chat, | |
tokenize=True, | |
return_tensors='pt', | |
continue_final_message=True | |
) | |
input_ids = input_ids.to('cuda') | |
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>') | |
# Generate the speech autoregressively | |
outputs = model.generate( | |
input_ids, | |
max_length=2048, # We trained our model with a max length of 2048 | |
eos_token_id= speech_end_id , | |
do_sample=True, | |
top_p=1, | |
temperature=0.8 | |
) | |
# Extract the speech tokens | |
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1] | |
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) | |
# Convert token <|s_23456|> to int 23456 | |
speech_tokens = extract_speech_ids(speech_tokens) | |
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0) | |
# Decode the speech tokens to speech waveform | |
gen_wav = Codec_model.decode_code(speech_tokens) | |
# if only need the generated part | |
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:] | |
progress(1, 'Synthesized!') | |
return (16000, gen_wav[0, 0, :].cpu().numpy()) | |
with gr.Blocks() as app_tts: | |
gr.Markdown("# Zero Shot Voice Clone TTS") | |
with gr.Row(): | |
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") | |
speaker_dropdown = gr.Dropdown( | |
choices=list(SPEAKERS.keys()), | |
label="Or select a predefined speaker", | |
value=None | |
) | |
gen_text_input = gr.Textbox(label="Text to Generate", lines=10) | |
generate_btn = gr.Button("Synthesize", variant="primary") | |
audio_output = gr.Audio(label="Synthesized Audio") | |
def update_audio(speaker): | |
if speaker in SPEAKERS: | |
return SPEAKERS[speaker]["path"] | |
return None | |
speaker_dropdown.change( | |
fn=update_audio, | |
inputs=[speaker_dropdown], | |
outputs=[ref_audio_input] | |
) | |
generate_btn.click( | |
infer, | |
inputs=[ | |
ref_audio_input, | |
gen_text_input, | |
], | |
outputs=[audio_output], | |
) | |
with gr.Blocks() as app_credits: | |
gr.Markdown(""" | |
# Credits | |
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training) | |
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) | |
""") | |
with gr.Blocks() as app: | |
gr.HTML(BANNER, elem_id="banner") | |
gr.Markdown( | |
""" | |
# Llasagna v0.1 1b TTS | |
This is a local web UI for Llasagna 1b Zero Shot Voice Cloning and TTS model. | |
It is a fine-tuned version of Llasa-1b that supports Italian | |
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. | |
""" | |
) | |
gr.TabbedInterface([app_tts], ["TTS"]) | |
app.launch(ssr_mode=False, share=True) |