import os os.system('pip install -r requirements.txt') import streamlit as st from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from datasets import load_dataset import torch import soundfile as sf from transformers import pipeline from PIL import Image import io st.title('Video to text and then text to speech app') image = st.file_uploader("Upload an image", type=["jpg", "png"]) question = st.text_input( label="Enter your question", value = "How many people and what is the color of this image?" ) def generate_speech(text): processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") inputs = processor(text=text, return_tensors="pt") embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) sf.write("speech.wav", speech.numpy(), samplerate=16000) if st.button("Generate"): image = Image.open(io.BytesIO(image.getvalue())) vqa_pipeline = pipeline("visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa") vqa_result = vqa_pipeline({"image": image, "question": question}) answer = vqa_result[0]['answer'] st.write(f"Question: {question} Answer: {answer}") # 显示回答 generate_speech(f"Question: {question}, Answer: {answer}") audio_file = open("speech.wav", 'rb') audio_bytes = audio_file.read() st.audio(audio_bytes, format="audio/wav")