VoiceAssistance / app.py
StevenChen16's picture
Update app.py
11529cc verified
import os
import sys
import re
import uuid
import tempfile
import json
import time
import shutil
from pathlib import Path
from argparse import ArgumentParser
from threading import Thread
from queue import Queue
import torch
import torchaudio
import gradio as gr
import whisper
from transformers import (
WhisperFeatureExtractor,
AutoTokenizer,
AutoModel,
AutoModelForCausalLM
)
from transformers.generation.streamers import BaseStreamer
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
from speech_tokenizer.utils import extract_speech_token
# Add local paths
sys.path.insert(0, "./cosyvoice")
sys.path.insert(0, "./third_party/Matcha-TTS")
from flow_inference import AudioDecoder
# RAG imports
from langchain_community.document_loaders import *
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.faiss import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import joblib
import spaces
# File loader mapping
LOADER_MAPPING = {
'.pdf': PyPDFLoader,
'.txt': TextLoader,
'.md': UnstructuredMarkdownLoader,
'.csv': CSVLoader,
'.jpg': UnstructuredImageLoader,
'.jpeg': UnstructuredImageLoader,
'.png': UnstructuredImageLoader,
'.json': JSONLoader,
'.html': BSHTMLLoader,
'.htm': BSHTMLLoader
}
class SessionManager:
def __init__(self, base_path="./sessions"):
self.base_path = Path(base_path)
self.base_path.mkdir(exist_ok=True)
def create_session(self):
session_id = str(uuid.uuid4())
session_path = self.base_path / session_id
session_path.mkdir(exist_ok=True)
return session_id
def get_session_path(self, session_id):
return self.base_path / session_id
def cleanup_old_sessions(self, max_age_hours=24):
current_time = time.time()
for session_dir in self.base_path.iterdir():
if session_dir.is_dir():
dir_stats = os.stat(session_dir)
age_hours = (current_time - dir_stats.st_mtime) / 3600
if age_hours > max_age_hours:
shutil.rmtree(session_dir)
class VectorStoreManager:
def __init__(self, session_manager, embedding_model):
self.session_manager = session_manager
self.embedding_model = embedding_model
self.stores = {}
def get_store_path(self, session_id):
session_path = self.session_manager.get_session_path(session_id)
return session_path / "vector_store.faiss"
def create_store(self, session_id, files):
if not files:
return None
store_path = self.get_store_path(session_id)
file_paths = [f.name for f in files]
pages = load_files(file_paths)
if not pages:
return None
docs = split_text(pages)
if not docs:
return None
vector_store = FAISS.from_documents(docs, self.embedding_model)
vector_store.save_local(str(store_path))
save_file_paths(str(store_path.parent), file_paths)
self.stores[session_id] = vector_store
return vector_store
def get_store(self, session_id):
if session_id in self.stores:
return self.stores[session_id]
store_path = self.get_store_path(session_id)
if store_path.exists():
vector_store = FAISS.load_local(str(store_path), self.embedding_model)
self.stores[session_id] = vector_store
return vector_store
return None
class TokenStreamer(BaseStreamer):
def __init__(self, skip_prompt: bool = False, timeout=None):
self.skip_prompt = skip_prompt
self.token_queue = Queue()
self.stop_signal = None
self.next_tokens_are_prompt = True
self.timeout = timeout
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError("TextStreamer only supports batch size 1")
elif len(value.shape) > 1:
value = value[0]
if self.skip_prompt and self.next_tokens_are_prompt:
self.next_tokens_are_prompt = False
return
for token in value.tolist():
self.token_queue.put(token)
def end(self):
self.token_queue.put(self.stop_signal)
def __iter__(self):
return self
def __next__(self):
value = self.token_queue.get(timeout=self.timeout)
if value == self.stop_signal:
raise StopIteration()
else:
return value
class ModelWorker:
def __init__(self, model_path, device='cuda'):
self.device = device
self.glm_model = AutoModel.from_pretrained(
model_path,
trust_remote_code=True,
device=device
).to(device).eval()
self.glm_tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True
)
@torch.inference_mode()
def generate_stream(self, params):
prompt = params["prompt"]
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
inputs = self.glm_tokenizer([prompt], return_tensors="pt")
inputs = inputs.to(self.device)
streamer = TokenStreamer(skip_prompt=True)
thread = Thread(
target=self.glm_model.generate,
kwargs=dict(
**inputs,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
top_p=float(top_p),
streamer=streamer
)
)
thread.start()
for token_id in streamer:
yield token_id
@spaces.GPU
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except Exception as e:
print("Caught Unknown Error", e)
ret = "Server Error"
yield ret
def load_single_file(file_path):
_, ext = os.path.splitext(file_path)
ext = ext.lower()
loader_class = LOADER_MAPPING.get(ext)
if not loader_class:
print(f"Unsupported file type: {ext}")
return None
loader = loader_class(file_path)
docs = list(loader.lazy_load())
return docs
def load_files(file_paths: list):
if not file_paths:
return []
docs = []
for file_path in tqdm(file_paths):
print("Loading docs:", file_path)
loaded_docs = load_single_file(file_path)
if loaded_docs:
docs.extend(loaded_docs)
return docs
def split_text(txt, chunk_size=200, overlap=20):
if not txt:
return []
splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap)
docs = splitter.split_documents(txt)
return docs
def create_embedding_model(model_file):
embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True})
return embedding
def save_file_paths(store_path, file_paths):
joblib.dump(file_paths, f'{store_path}/file_paths.pkl')
def create_vector_store(docs, store_file, embeddings):
if not docs:
raise ValueError("No documents provided for creating vector store")
vector_store = FAISS.from_documents(docs, embeddings)
vector_store.save_local(store_file)
return vector_store
def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8):
retriever = vector_store.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={"score_threshold": relevance_threshold, "k": k}
)
similar_docs = retriever.invoke(query)
context = [doc.page_content for doc in similar_docs]
return context
def initialize_fn():
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
global session_manager, vector_store_manager, whisper_transcribe_model, model_worker
if audio_decoder is not None:
return
print("Initializing models and managers...")
# Initialize session manager first
session_manager = SessionManager()
model_worker = ModelWorker(args.model_path, device)
glm_tokenizer = model_worker.glm_tokenizer
audio_decoder = AudioDecoder(
config_path=flow_config,
flow_ckpt_path=flow_checkpoint,
hift_ckpt_path=hift_checkpoint,
device=device
)
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
embedding_model = create_embedding_model(Embedding_Model)
vector_store_manager = VectorStoreManager(session_manager, embedding_model)
whisper_transcribe_model = whisper.load_model("base")
print("Initialization complete.")
def clear_fn():
return [], [], '', '', '', None, None
def reinitialize_database(files, session_id, progress=gr.Progress()):
if not files:
return "No files uploaded. Please upload files first."
progress(0.5, desc="Processing documents and creating vector store...")
vector_store = vector_store_manager.create_store(session_id, files)
if vector_store is None:
return "Failed to create vector store. Please check your documents."
return "Database initialized successfully!"
@spaces.GPU
def inference_fn(
temperature: float,
top_p: float,
max_new_token: int,
input_mode,
audio_path: str | None,
input_text: str | None,
history: list[dict],
session_id: str,
):
vector_store = vector_store_manager.get_store(session_id)
using_context = False
context = None
if input_mode == "audio":
assert audio_path is not None
history.append({"role": "user", "content": {"path": audio_path}})
audio_tokens = extract_speech_token(
whisper_model, feature_extractor, [audio_path]
)[0]
if len(audio_tokens) == 0:
raise gr.Error("No audio tokens extracted")
audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
user_input = audio_tokens
system_prompt = "User will provide you with a speech instruction. Do it step by step."
if vector_store:
whisper_result = whisper_transcribe_model.transcribe(audio_path)
transcribed_text = whisper_result['text']
context = query_vector_store(vector_store, transcribed_text, 4, 0.7)
else:
assert input_text is not None
history.append({"role": "user", "content": input_text})
user_input = input_text
system_prompt = "User will provide you with a text instruction. Do it step by step."
if vector_store:
context = query_vector_store(vector_store, input_text, 4, 0.7)
if context:
using_context = True
inputs = ""
if "<|system|>" not in inputs:
inputs += f"<|system|>\n{system_prompt}"
if ("<|context|>" not in inputs) and (using_context == True):
inputs += f"<|context|> According to the following content: {context}, Please answer the question"
if "<|context|>" not in inputs and context is not None:
inputs += f"<|context|>\n{context}"
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
with torch.no_grad():
text_tokens, audio_tokens = [], []
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
complete_tokens = []
prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
this_uuid = str(uuid.uuid4())
tts_speechs = []
tts_mels = []
prev_mel = None
is_finalize = False
block_size = 10
for token_id in model_worker.generate_stream_gate({
"prompt": inputs,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_token,
}):
if isinstance(token_id, str):
yield history, inputs, '', token_id, None, None
return
if token_id == end_token_id:
is_finalize = True
if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
block_size = 20
tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
if prev_mel is not None:
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
tts_speech, tts_mel = audio_decoder.token2wav(
tts_token,
uuid=this_uuid,
prompt_token=flow_prompt_speech_token.to(device),
prompt_feat=prompt_speech_feat.to(device),
finalize=is_finalize
)
prev_mel = tts_mel
tts_speechs.append(tts_speech.squeeze())
tts_mels.append(tts_mel)
yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
audio_tokens = []
if not is_finalize:
complete_tokens.append(token_id)
if token_id >= audio_offset:
audio_tokens.append(token_id - audio_offset)
else:
text_tokens.append(token_id)
# Generate final audio and save
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
def update_input_interface(input_mode):
if input_mode == "audio":
return [gr.update(visible=True), gr.update(visible=False)]
else:
return [gr.update(visible=False), gr.update(visible=True)]
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default="7860")
parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
parser.add_argument("--share", action='store_true')
args = parser.parse_args()
# Define model configurations
flow_config = os.path.join(args.flow_path, "config.yaml")
flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
device = "cuda"
# Global variables
audio_decoder = None
whisper_model = None
feature_extractor = None
glm_model = None
glm_tokenizer = None
session_manager = None
vector_store_manager = None
whisper_transcribe_model = None
model_worker = None
# Configuration
Embedding_Model = 'intfloat/multilingual-e5-large-instruct'
# Initialize models first
initialize_fn()
# Create Gradio interface
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
# Now session_manager is initialized
session_id = gr.State(session_manager.create_session())
with gr.Row():
# Left column for chat interface
with gr.Column(scale=2):
gr.Markdown("## Chat Interface")
with gr.Row():
temperature = gr.Number(label="Temperature", value=0.2, minimum=0, maximum=1)
top_p = gr.Number(label="Top p", value=0.8, minimum=0, maximum=1)
max_new_token = gr.Number(label="Max new tokens", value=2000, minimum=1)
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
type="messages",
scale=1,
height=500
)
with gr.Row():
input_mode = gr.Radio(
["audio", "text"],
label="Input Mode",
value="audio"
)
with gr.Row():
audio = gr.Audio(
label="Input audio",
type='filepath',
show_download_button=True,
visible=True
)
text_input = gr.Textbox(
label="Input text",
placeholder="Enter your text here...",
lines=2,
visible=False
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
reset_btn = gr.Button("Clear")
output_audio = gr.Audio(
label="Play",
streaming=True,
autoplay=True,
show_download_button=False
)
complete_audio = gr.Audio(
label="Last Output Audio (If Any)",
show_download_button=True
)
# Right column for database management
with gr.Column(scale=1):
gr.Markdown("## Database Management")
file_upload = gr.Files(
label="Upload Database Files",
file_types=[".txt", ".pdf", ".md", ".csv", ".json", ".html", ".htm"],
file_count="multiple"
)
reinit_btn = gr.Button("Initialize Database", variant="secondary")
status_text = gr.Textbox(label="Status", interactive=False)
history_state = gr.State([])
# Setup interaction handlers
respond = submit_btn.click(
inference_fn,
inputs=[
temperature,
top_p,
max_new_token,
input_mode,
audio,
text_input,
history_state,
session_id,
],
outputs=[
history_state,
output_audio,
complete_audio
]
)
respond.then(lambda s: s, [history_state], chatbot)
reset_btn.click(
clear_fn,
outputs=[
chatbot,
history_state,
output_audio,
complete_audio
]
)
input_mode.change(
update_input_interface,
inputs=[input_mode],
outputs=[audio, text_input]
)
# Database initialization handler
reinit_btn.click(
reinitialize_database,
inputs=[file_upload, session_id],
outputs=[status_text]
)
# Periodic cleanup of old sessions (optional)
if session_manager:
session_manager.cleanup_old_sessions()
# Initialize models and launch interface
initialize_fn()
demo.launch(
server_port=args.port,
server_name=args.host,
share=args.share
)