# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#               2023 Horizon Inc. (authors: Xingchen Song)
#               2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from contextlib import nullcontext
import logging
import os
import torch
import json
import re
import datetime
import yaml

# import deepspeed
import torch.optim as optim
import torch.distributed as dist

from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm_

# from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live

from cosyvoice.dataset.dataset import Dataset
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR


def init_distributed(args):
    world_size = int(os.environ.get('WORLD_SIZE', 1))
    local_rank = int(os.environ.get('LOCAL_RANK', 0))
    rank = int(os.environ.get('RANK', 0))
    logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
                 ', rank {}, world_size {}'.format(rank, world_size))
    if args.train_engine == 'torch_ddp':
        torch.cuda.set_device(local_rank)
        dist.init_process_group(args.dist_backend)
    else:
        deepspeed.init_distributed(dist_backend=args.dist_backend)
    return world_size, local_rank, rank


def init_dataset_and_dataloader(args, configs):
    train_dataset = Dataset(args.train_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=True, partition=True)
    cv_dataset = Dataset(args.cv_data, data_pipeline=configs['data_pipeline'], mode='train', shuffle=False, partition=False)

    # do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
    train_data_loader = DataLoader(train_dataset,
                                   batch_size=None,
                                   pin_memory=args.pin_memory,
                                   num_workers=args.num_workers,
                                   prefetch_factor=args.prefetch)
    cv_data_loader = DataLoader(cv_dataset,
                                batch_size=None,
                                pin_memory=args.pin_memory,
                                num_workers=args.num_workers,
                                prefetch_factor=args.prefetch)
    return train_dataset, cv_dataset, train_data_loader, cv_data_loader



def check_modify_and_save_config(args, configs):
    if args.train_engine == "torch_ddp":
        configs['train_conf']["dtype"] = 'fp32'
    else:
        with open(args.deepspeed_config, 'r') as fin:
            ds_configs = json.load(fin)
        if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
            configs['train_conf']["dtype"] = "fp16"
        elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
            configs['train_conf']["dtype"] = "bf16"
        else:
            configs['train_conf']["dtype"] = "fp32"
        assert ds_configs["train_micro_batch_size_per_gpu"] == 1
        # if use deepspeed, override ddp config
        configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] * configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
        configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
        configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
        configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
    return configs


def wrap_cuda_model(args, model):
    local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
    world_size = int(os.environ.get('WORLD_SIZE', 1))
    if args.train_engine == "torch_ddp":  # native pytorch ddp
        assert (torch.cuda.is_available())
        model.cuda()
        model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
    else:
        if int(os.environ.get('RANK', 0)) == 0:
            logging.info("Estimating model states memory needs (zero2)...")
            estimate_zero2_model_states_mem_needs_all_live(
                model,
                num_gpus_per_node=local_world_size,
                num_nodes=world_size // local_world_size)
    return model


def init_optimizer_and_scheduler(args, configs, model):
    if configs['train_conf']['optim'] == 'adam':
        optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
    elif configs['train_conf']['optim'] == 'adamw':
        optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
    else:
        raise ValueError("unknown optimizer: " + configs['train_conf'])

    if configs['train_conf']['scheduler'] == 'warmuplr':
        scheduler_type = WarmupLR
        scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
    elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
        scheduler_type = NoamHoldAnnealing
        scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
    elif configs['train_conf']['scheduler'] == 'constantlr':
        scheduler_type = ConstantLR
        scheduler = ConstantLR(optimizer)
    else:
        raise ValueError("unknown scheduler: " + configs['train_conf'])

    # use deepspeed optimizer for speedup
    if args.train_engine == "deepspeed":
        def scheduler(opt):
            return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
        model, optimizer, _, scheduler = deepspeed.initialize(
            args=args,
            model=model,
            optimizer=None,
            lr_scheduler=scheduler,
            model_parameters=model.parameters())

    return model, optimizer, scheduler


def init_summarywriter(args):
    writer = None
    if int(os.environ.get('RANK', 0)) == 0:
        os.makedirs(args.model_dir, exist_ok=True)
        writer = SummaryWriter(args.tensorboard_dir)
    return writer


def save_model(model, model_name, info_dict):
    rank = int(os.environ.get('RANK', 0))
    model_dir = info_dict["model_dir"]
    save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))

    if info_dict["train_engine"] == "torch_ddp":
        if rank == 0:
            torch.save(model.module.state_dict(), save_model_path)
    else:
        with torch.no_grad():
            model.save_checkpoint(save_dir=model_dir,
                                  tag=model_name,
                                  client_state=info_dict)
    if rank == 0:
        info_path = re.sub('.pt$', '.yaml', save_model_path)
        info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
        with open(info_path, 'w') as fout:
            data = yaml.dump(info_dict)
            fout.write(data)
        logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))


def cosyvoice_join(group_join, info_dict):
    world_size = int(os.environ.get('WORLD_SIZE', 1))
    local_rank = int(os.environ.get('LOCAL_RANK', 0))
    rank = int(os.environ.get('RANK', 0))

    if info_dict["batch_idx"] != 0:
        # we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
        try:
            dist.monitored_barrier(group=group_join,
                                   timeout=group_join.options._timeout)
            return False
        except RuntimeError as e:
            logging.info("Detected uneven workload distribution: {}\n".format(e) +
                         "Break current worker to manually join all workers, " +
                         "world_size {}, current rank {}, current local_rank {}\n".
                         format(world_size, rank, local_rank))
            return True
    else:
        return False


def batch_forward(model, batch, info_dict):
    device = int(os.environ.get('LOCAL_RANK', 0))

    dtype = info_dict["dtype"]
    if dtype == "fp16":
        dtype = torch.float16
    elif dtype == "bf16":
        dtype = torch.bfloat16
    else:  # fp32
        dtype = torch.float32

    if info_dict['train_engine'] == 'torch_ddp':
        autocast = nullcontext()
    else:
        autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)

    with autocast:
        info_dict['loss_dict'] = model(batch, device)
    return info_dict


def batch_backward(model, info_dict):
    if info_dict["train_engine"] == "deepspeed":
        scaled_loss = model.backward(info_dict['loss_dict']['loss'])
    else:
        scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
        scaled_loss.backward()

    info_dict['loss_dict']['loss'] = scaled_loss
    return info_dict


def update_parameter_and_lr(model, optimizer, scheduler, info_dict):
    grad_norm = 0.0
    if info_dict['train_engine'] == "deepspeed":
        info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
        model.step()
        grad_norm = model.get_global_grad_norm()
    elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
        grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
        if torch.isfinite(grad_norm):
            optimizer.step()
        optimizer.zero_grad()
        scheduler.step()
    info_dict["lr"] = optimizer.param_groups[0]['lr']
    info_dict["grad_norm"] = grad_norm
    return info_dict


def log_per_step(writer, info_dict):
    tag = info_dict["tag"]
    epoch = info_dict.get('epoch', 0)
    step = info_dict["step"]
    batch_idx = info_dict["batch_idx"]
    loss_dict = info_dict['loss_dict']
    rank = int(os.environ.get('RANK', 0))

    # only rank 0 write to tensorboard to avoid multi-process write
    if writer is not None:
        if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
           (info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
            for k in ['epoch', 'lr', 'grad_norm']:
                writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
            for k, v in loss_dict.items():
                writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)

    # TRAIN & CV, Shell log (stdout)
    if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
        log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
        for name, value in loss_dict.items():
            log_str += '{} {:.6f} '.format(name, value)
        if tag == "TRAIN":
            log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
                info_dict["lr"], info_dict['grad_norm'])
        log_str += ' rank {}'.format(rank)
        logging.debug(log_str)


def log_per_save(writer, info_dict):
    tag = info_dict["tag"]
    epoch = info_dict["epoch"]
    step = info_dict["step"]
    loss_dict = info_dict["loss_dict"]
    lr = info_dict['lr']
    rank = int(os.environ.get('RANK', 0))
    logging.info(
        'Epoch {} Step {} CV info lr {} {} rank {}'.format(
            epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))

    if writer is not None:
        for k in ['epoch', 'lr']:
            writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
        for k, v in loss_dict.items():
            writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)