import os import sys import re import uuid import tempfile import json import time import shutil from pathlib import Path from argparse import ArgumentParser from threading import Thread from queue import Queue import torch import torchaudio import gradio as gr import whisper from transformers import ( WhisperFeatureExtractor, AutoTokenizer, AutoModel, AutoModelForCausalLM ) from transformers.generation.streamers import BaseStreamer from speech_tokenizer.modeling_whisper import WhisperVQEncoder from speech_tokenizer.utils import extract_speech_token # Add local paths sys.path.insert(0, "./cosyvoice") sys.path.insert(0, "./third_party/Matcha-TTS") from flow_inference import AudioDecoder # RAG imports from langchain_community.document_loaders import * from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.vectorstores.faiss import FAISS from langchain_huggingface import HuggingFaceEmbeddings from tqdm import tqdm import joblib import spaces # File loader mapping LOADER_MAPPING = { '.pdf': PyPDFLoader, '.txt': TextLoader, '.md': UnstructuredMarkdownLoader, '.csv': CSVLoader, '.jpg': UnstructuredImageLoader, '.jpeg': UnstructuredImageLoader, '.png': UnstructuredImageLoader, '.json': JSONLoader, '.html': BSHTMLLoader, '.htm': BSHTMLLoader } class SessionManager: def __init__(self, base_path="./sessions"): self.base_path = Path(base_path) self.base_path.mkdir(exist_ok=True) def create_session(self): session_id = str(uuid.uuid4()) session_path = self.base_path / session_id session_path.mkdir(exist_ok=True) return session_id def get_session_path(self, session_id): return self.base_path / session_id def cleanup_old_sessions(self, max_age_hours=24): current_time = time.time() for session_dir in self.base_path.iterdir(): if session_dir.is_dir(): dir_stats = os.stat(session_dir) age_hours = (current_time - dir_stats.st_mtime) / 3600 if age_hours > max_age_hours: shutil.rmtree(session_dir) class VectorStoreManager: def __init__(self, session_manager, embedding_model): self.session_manager = session_manager self.embedding_model = embedding_model self.stores = {} def get_store_path(self, session_id): session_path = self.session_manager.get_session_path(session_id) return session_path / "vector_store.faiss" def create_store(self, session_id, files): if not files: return None store_path = self.get_store_path(session_id) file_paths = [f.name for f in files] pages = load_files(file_paths) if not pages: return None docs = split_text(pages) if not docs: return None vector_store = FAISS.from_documents(docs, self.embedding_model) vector_store.save_local(str(store_path)) save_file_paths(str(store_path.parent), file_paths) self.stores[session_id] = vector_store return vector_store def get_store(self, session_id): if session_id in self.stores: return self.stores[session_id] store_path = self.get_store_path(session_id) if store_path.exists(): vector_store = FAISS.load_local(str(store_path), self.embedding_model) self.stores[session_id] = vector_store return vector_store return None class TokenStreamer(BaseStreamer): def __init__(self, skip_prompt: bool = False, timeout=None): self.skip_prompt = skip_prompt self.token_queue = Queue() self.stop_signal = None self.next_tokens_are_prompt = True self.timeout = timeout def put(self, value): if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1") elif len(value.shape) > 1: value = value[0] if self.skip_prompt and self.next_tokens_are_prompt: self.next_tokens_are_prompt = False return for token in value.tolist(): self.token_queue.put(token) def end(self): self.token_queue.put(self.stop_signal) def __iter__(self): return self def __next__(self): value = self.token_queue.get(timeout=self.timeout) if value == self.stop_signal: raise StopIteration() else: return value class ModelWorker: def __init__(self, model_path, device='cuda'): self.device = device self.glm_model = AutoModel.from_pretrained( model_path, trust_remote_code=True, device=device ).to(device).eval() self.glm_tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) @torch.inference_mode() def generate_stream(self, params): prompt = params["prompt"] temperature = float(params.get("temperature", 1.0)) top_p = float(params.get("top_p", 1.0)) max_new_tokens = int(params.get("max_new_tokens", 256)) inputs = self.glm_tokenizer([prompt], return_tensors="pt") inputs = inputs.to(self.device) streamer = TokenStreamer(skip_prompt=True) thread = Thread( target=self.glm_model.generate, kwargs=dict( **inputs, max_new_tokens=int(max_new_tokens), temperature=float(temperature), top_p=float(top_p), streamer=streamer ) ) thread.start() for token_id in streamer: yield token_id @spaces.GPU def generate_stream_gate(self, params): try: for x in self.generate_stream(params): yield x except Exception as e: print("Caught Unknown Error", e) ret = "Server Error" yield ret def load_single_file(file_path): _, ext = os.path.splitext(file_path) ext = ext.lower() loader_class = LOADER_MAPPING.get(ext) if not loader_class: print(f"Unsupported file type: {ext}") return None loader = loader_class(file_path) docs = list(loader.lazy_load()) return docs def load_files(file_paths: list): if not file_paths: return [] docs = [] for file_path in tqdm(file_paths): print("Loading docs:", file_path) loaded_docs = load_single_file(file_path) if loaded_docs: docs.extend(loaded_docs) return docs def split_text(txt, chunk_size=200, overlap=20): if not txt: return [] splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap) docs = splitter.split_documents(txt) return docs def create_embedding_model(model_file): embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True}) return embedding def save_file_paths(store_path, file_paths): joblib.dump(file_paths, f'{store_path}/file_paths.pkl') def create_vector_store(docs, store_file, embeddings): if not docs: raise ValueError("No documents provided for creating vector store") vector_store = FAISS.from_documents(docs, embeddings) vector_store.save_local(store_file) return vector_store def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8): retriever = vector_store.as_retriever( search_type="similarity_score_threshold", search_kwargs={"score_threshold": relevance_threshold, "k": k} ) similar_docs = retriever.invoke(query) context = [doc.page_content for doc in similar_docs] return context def initialize_fn(): global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer global session_manager, vector_store_manager, whisper_transcribe_model, model_worker if audio_decoder is not None: return print("Initializing models and managers...") # Initialize session manager first session_manager = SessionManager() model_worker = ModelWorker(args.model_path, device) glm_tokenizer = model_worker.glm_tokenizer audio_decoder = AudioDecoder( config_path=flow_config, flow_ckpt_path=flow_checkpoint, hift_ckpt_path=hift_checkpoint, device=device ) whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device) feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path) embedding_model = create_embedding_model(Embedding_Model) vector_store_manager = VectorStoreManager(session_manager, embedding_model) whisper_transcribe_model = whisper.load_model("base") print("Initialization complete.") def clear_fn(): return [], [], '', '', '', None, None def reinitialize_database(files, session_id, progress=gr.Progress()): if not files: return "No files uploaded. Please upload files first." progress(0.5, desc="Processing documents and creating vector store...") vector_store = vector_store_manager.create_store(session_id, files) if vector_store is None: return "Failed to create vector store. Please check your documents." return "Database initialized successfully!" def inference_fn( temperature: float, top_p: float, max_new_token: int, input_mode, audio_path: str | None, input_text: str | None, history: list[dict], session_id: str, ): vector_store = vector_store_manager.get_store(session_id) using_context = False context = None if input_mode == "audio": assert audio_path is not None history.append({"role": "user", "content": {"path": audio_path}}) audio_tokens = extract_speech_token( whisper_model, feature_extractor, [audio_path] )[0] if len(audio_tokens) == 0: raise gr.Error("No audio tokens extracted") audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens]) audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>" user_input = audio_tokens system_prompt = "User will provide you with a speech instruction. Do it step by step." if vector_store: whisper_result = whisper_transcribe_model.transcribe(audio_path) transcribed_text = whisper_result['text'] context = query_vector_store(vector_store, transcribed_text, 4, 0.7) else: assert input_text is not None history.append({"role": "user", "content": input_text}) user_input = input_text system_prompt = "User will provide you with a text instruction. Do it step by step." if vector_store: context = query_vector_store(vector_store, input_text, 4, 0.7) if context: using_context = True inputs = "" if "<|system|>" not in inputs: inputs += f"<|system|>\n{system_prompt}" if ("<|context|>" not in inputs) and (using_context == True): inputs += f"<|context|> According to the following content: {context}, Please answer the question" if "<|context|>" not in inputs and context is not None: inputs += f"<|context|>\n{context}" inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n" with torch.no_grad(): text_tokens, audio_tokens = [], [] audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>') end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>') complete_tokens = [] prompt_speech_feat = torch.zeros(1, 0, 80).to(device) flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device) this_uuid = str(uuid.uuid4()) tts_speechs = [] tts_mels = [] prev_mel = None is_finalize = False block_size = 10 for token_id in model_worker.generate_stream_gate({ "prompt": inputs, "temperature": temperature, "top_p": top_p, "max_new_tokens": max_new_token, }): if isinstance(token_id, str): yield history, inputs, '', token_id, None, None return if token_id == end_token_id: is_finalize = True if len(audio_tokens) >= block_size or (is_finalize and audio_tokens): block_size = 20 tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0) if prev_mel is not None: prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2) tts_speech, tts_mel = audio_decoder.token2wav( tts_token, uuid=this_uuid, prompt_token=flow_prompt_speech_token.to(device), prompt_feat=prompt_speech_feat.to(device), finalize=is_finalize ) prev_mel = tts_mel tts_speechs.append(tts_speech.squeeze()) tts_mels.append(tts_mel) yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1) audio_tokens = [] if not is_finalize: complete_tokens.append(token_id) if token_id >= audio_offset: audio_tokens.append(token_id - audio_offset) else: text_tokens.append(token_id) # Generate final audio and save tts_speech = torch.cat(tts_speechs, dim=-1).cpu() complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f: torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav") history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}}) history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)}) yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy()) def update_input_interface(input_mode): if input_mode == "audio": return [gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=True)] if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int, default="7860") parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder") parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b") parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer") parser.add_argument("--share", action='store_true') args = parser.parse_args() # Define model configurations flow_config = os.path.join(args.flow_path, "config.yaml") flow_checkpoint = os.path.join(args.flow_path, 'flow.pt') hift_checkpoint = os.path.join(args.flow_path, 'hift.pt') device = "cuda" # Global variables audio_decoder = None whisper_model = None feature_extractor = None glm_model = None glm_tokenizer = None session_manager = None vector_store_manager = None whisper_transcribe_model = None model_worker = None # Configuration Embedding_Model = 'intfloat/multilingual-e5-large-instruct' # Initialize models first initialize_fn() # Create Gradio interface with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo: # Now session_manager is initialized session_id = gr.State(session_manager.create_session()) with gr.Row(): # Left column for chat interface with gr.Column(scale=2): gr.Markdown("## Chat Interface") with gr.Row(): temperature = gr.Number(label="Temperature", value=0.2, minimum=0, maximum=1) top_p = gr.Number(label="Top p", value=0.8, minimum=0, maximum=1) max_new_token = gr.Number(label="Max new tokens", value=2000, minimum=1) chatbot = gr.Chatbot( elem_id="chatbot", bubble_full_width=False, type="messages", scale=1, height=500 ) with gr.Row(): input_mode = gr.Radio( ["audio", "text"], label="Input Mode", value="audio" ) with gr.Row(): audio = gr.Audio( label="Input audio", type='filepath', show_download_button=True, visible=True ) text_input = gr.Textbox( label="Input text", placeholder="Enter your text here...", lines=2, visible=False ) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") reset_btn = gr.Button("Clear") output_audio = gr.Audio( label="Play", streaming=True, autoplay=True, show_download_button=False ) complete_audio = gr.Audio( label="Last Output Audio (If Any)", show_download_button=True ) # Right column for database management with gr.Column(scale=1): gr.Markdown("## Database Management") file_upload = gr.Files( label="Upload Database Files", file_types=[".txt", ".pdf", ".md", ".csv", ".json", ".html", ".htm"], file_count="multiple" ) reinit_btn = gr.Button("Initialize Database", variant="secondary") status_text = gr.Textbox(label="Status", interactive=False) history_state = gr.State([]) # Setup interaction handlers respond = submit_btn.click( inference_fn, inputs=[ temperature, top_p, max_new_token, input_mode, audio, text_input, history_state, session_id, ], outputs=[ history_state, output_audio, complete_audio ] ) respond.then(lambda s: s, [history_state], chatbot) reset_btn.click( clear_fn, outputs=[ chatbot, history_state, output_audio, complete_audio ] ) input_mode.change( update_input_interface, inputs=[input_mode], outputs=[audio, text_input] ) # Database initialization handler reinit_btn.click( reinitialize_database, inputs=[file_upload, session_id], outputs=[status_text] ) # Periodic cleanup of old sessions (optional) if session_manager: session_manager.cleanup_old_sessions() # Initialize models and launch interface initialize_fn() demo.launch( server_port=args.port, server_name=args.host, share=args.share )