""" A model worker with transformers libs executes the model. Run BF16 inference with: python model_server.py --host localhost --model-path THUDM/glm-4-voice-9b --port 10000 --dtype bfloat16 --device cuda:0 Run Int4 inference with: python model_server.py --host localhost --model-path THUDM/glm-4-voice-9b --port 10000 --dtype int4 --device cuda:0 """ import argparse import json from fastapi import FastAPI, Request from fastapi.responses import StreamingResponse from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig from transformers.generation.streamers import BaseStreamer import torch import uvicorn from threading import Thread from queue import Queue class TokenStreamer(BaseStreamer): def __init__(self, skip_prompt: bool = False, timeout=None): self.skip_prompt = skip_prompt # variables used in the streaming process self.token_queue = Queue() self.stop_signal = None self.next_tokens_are_prompt = True self.timeout = timeout def put(self, value): if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1") elif len(value.shape) > 1: value = value[0] if self.skip_prompt and self.next_tokens_are_prompt: self.next_tokens_are_prompt = False return for token in value.tolist(): self.token_queue.put(token) def end(self): self.token_queue.put(self.stop_signal) def __iter__(self): return self def __next__(self): value = self.token_queue.get(timeout=self.timeout) if value == self.stop_signal: raise StopIteration() else: return value class ModelWorker: def __init__(self, model_path, dtype="bfloat16", device='cuda'): self.device = device self.bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) if dtype == "int4" else None self.glm_model = AutoModel.from_pretrained( model_path, trust_remote_code=True, quantization_config=self.bnb_config if self.bnb_config else None, device_map={"": 0} ).eval() self.glm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) @torch.inference_mode() def generate_stream(self, params): tokenizer, model = self.glm_tokenizer, self.glm_model prompt = params["prompt"] temperature = float(params.get("temperature", 1.0)) top_p = float(params.get("top_p", 1.0)) max_new_tokens = int(params.get("max_new_tokens", 256)) inputs = tokenizer([prompt], return_tensors="pt") inputs = inputs.to(self.device) streamer = TokenStreamer(skip_prompt=True) thread = Thread( target=model.generate, kwargs=dict( **inputs, max_new_tokens=int(max_new_tokens), temperature=float(temperature), top_p=float(top_p), streamer=streamer ) ) thread.start() for token_id in streamer: yield (json.dumps({"token_id": token_id, "error_code": 0}) + "\n").encode() def generate_stream_gate(self, params): try: for x in self.generate_stream(params): yield x except Exception as e: print("Caught Unknown Error", e) ret = { "text": "Server Error", "error_code": 1, } yield (json.dumps(ret) + "\n").encode() app = FastAPI() @app.post("/generate_stream") async def generate_stream(request: Request): params = await request.json() generator = worker.generate_stream_gate(params) return StreamingResponse(generator) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--device", type=str, default="cuda:0") parser.add_argument("--port", type=int, default=10000) parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b") args = parser.parse_args() worker = ModelWorker(args.model_path, args.dtype, args.device) uvicorn.run(app, host=args.host, port=args.port, log_level="info")