Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
# Load the pre-trained model and tokenizer
|
6 |
+
models = {
|
7 |
+
"EleutherAI/gpt-neo-2.7B": "EleutherAI/gpt-neo-2.7B",
|
8 |
+
"BlinkDL/rwkv-4-pile-430m": "BlinkDL/rwkv-4-pile-430m",
|
9 |
+
"BlinkDL/rwkv-4-pile-1b5": "BlinkDL/rwkv-4-pile-1b5",
|
10 |
+
"BlinkDL/RWKV-4-Raven": "BlinkDL/RWKV-4-Raven"
|
11 |
+
}
|
12 |
+
|
13 |
+
def generate_text(prompt, model_name):
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
16 |
+
|
17 |
+
# Tokenize the input
|
18 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
19 |
+
|
20 |
+
# Generate a response
|
21 |
+
output = model.generate(input_ids, max_length=100, num_return_sequences=1)
|
22 |
+
|
23 |
+
# Decode the output
|
24 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
return generated_text
|
27 |
+
|
28 |
+
def main():
|
29 |
+
# Create a Gradio interface
|
30 |
+
model_dropdown = gr.inputs.Dropdown(choices=list(models.keys()), label="Select Model")
|
31 |
+
prompt_input = gr.inputs.Textbox(lines=5, placeholder="Enter your prompt here...", label="Prompt")
|
32 |
+
output_text = gr.outputs.Textbox(label="Generated Text")
|
33 |
+
|
34 |
+
interface = gr.Interface(
|
35 |
+
fn=generate_text,
|
36 |
+
inputs=[prompt_input, model_dropdown],
|
37 |
+
outputs=output_text,
|
38 |
+
title="Chat-bot using RWKV LLM",
|
39 |
+
description="Select a model and enter a prompt to generate text using the chat-bot."
|
40 |
+
)
|
41 |
+
|
42 |
+
# Launch the interface
|
43 |
+
interface.launch()
|
44 |
+
|
45 |
+
if __name__ == '__main__':
|
46 |
+
main()
|