import os os.system("pip install ctransformers gradio") import time import requests from tqdm import tqdm import ctransformers import gradio as gr if not os.path.isfile('./llama-2-7b.ggmlv3.q4_K_S.bin'): print("Downloading Model from HuggingFace") url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin" response = requests.get(url, stream=True) total_size_in_bytes = int(response.headers.get('content-length', 0)) block_size = 1024 # 1 Kibibyte progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) with open('llama-2-7b.ggmlv3.q4_K_S.bin', 'wb') as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: print("ERROR, something went wrong") configObj = ctransformers.Config(stop=["\n", 'User']) config = ctransformers.AutoConfig(config=configObj, model_type='llama') config.config.stop = ["\n"] llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config) print("Loaded model") def complete(prompt, stop=["User", "Assistant"]): print("0") tokens = llm.tokenize(prompt) print("1") token_count = 0 output = '' print("2") for token in llm.generate(tokens): print("tokens") token_count += 1 result = llm.detokenize(token) print("detokens") output += result print(output) for word in stop: if word in output: print(output, " | ", token_count) return output, token_count return output, token_count def greet(question): print(question) output, token_count = complete(f'User: {question}. Can you please answer this as informatively but concisely as possible.\nAssistant: ') response = f"Response: {output} | Tokens: {token_count}" print(response) return response iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch(share=True)