Su4374651 commited on
Commit
1d56550
·
verified ·
1 Parent(s): 4eb50e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -38
app.py CHANGED
@@ -1,21 +1,59 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
- system_message = "I offer mock interviews, personalized feedback, and valuable insights into common interview questions and industry-specific tips. My goal is to boost your confidence, improve your communication skills, and equip you with the tools needed to impress potential employers."
19
  messages = [{"role": "system", "content": system_message}]
20
 
21
  for val in history:
@@ -26,8 +64,12 @@ def respond(
26
 
27
  messages.append({"role": "user", "content": message})
28
 
29
- response = ""
 
 
 
30
 
 
31
  for message in client.chat_completion(
32
  messages,
33
  max_tokens=max_tokens,
@@ -36,36 +78,31 @@ def respond(
36
  top_p=top_p,
37
  ):
38
  token = message.choices[0].delta.content
39
-
40
  response += token
41
  yield response
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value = "I offer mock interviews, personalized feedback, and valuable insights into common interview questions and industry-specific tips. My goal is to boost your confidence, improve your communication skills, and equip you with the tools needed to impress potential employers.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
-
61
- examples = [
62
- ["What are the most common mistakes candidates make during interviews, and how can I avoid them?"],
63
- ["Do you have any tips for handling nerves or anxiety during interviews?"],
64
- ["What are effective strategies for answering behavioral interview questions?"]
65
- ],
66
- title = 'Job Interview Prep Coach'
67
- )
68
-
69
 
70
  if __name__ == "__main__":
71
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
+ import fitz # PyMuPDF
5
+ from sentence_transformers import SentenceTransformer, util
6
+ import numpy as np
7
+ import faiss
8
 
 
 
 
9
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+ class MyApp:
11
+ def __init__(self) -> None:
12
+ self.documents = []
13
+ self.embeddings = None
14
+ self.index = None
15
+ self.load_pdf("YOURPDFFILE")
16
+ self.build_vector_db()
17
 
18
+ def load_pdf(self, file_path: str) -> None:
19
+ """Extracts text from a PDF file and stores it in the app's documents."""
20
+ doc = fitz.open(file_path)
21
+ self.documents = []
22
+ for page_num in range(len(doc)):
23
+ page = doc[page_num]
24
+ text = page.get_text()
25
+ self.documents.append({"page": page_num + 1, "content": text})
26
+ print("PDF processed successfully!")
27
+ def build_vector_db(self) -> None:
28
+ """Builds a vector database using the content of the PDF."""
29
+ model = SentenceTransformer('all-MiniLM-L6-v2')
30
+ # Generate embeddings for all document contents
31
+ self.embeddings = model.encode([doc["content"] for doc in self.documents])
32
+ # Create a FAISS index
33
+ self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
34
+ # Add the embeddings to the index
35
+ self.index.add(np.array(self.embeddings))
36
+ print("Vector database built successfully!")def search_documents(self, query: str, k: int = 3) -> List[str]:
37
+ """Searches for relevant documents using vector similarity."""
38
+ model = SentenceTransformer('all-MiniLM-L6-v2')
39
+ # Generate an embedding for the query
40
+ query_embedding = model.encode([query])
41
+ # Perform a search in the FAISS index
42
+ D, I = self.index.search(np.array(query_embedding), k)
43
+ # Retrieve the top-k documents
44
+ results = [self.documents[i]["content"] for i in I[0]]
45
+ return results if results else ["No relevant documents found."]
46
+ app = MyApp()
47
 
48
  def respond(
49
+ message: str,
50
+ history: List[Tuple[str, str]],
51
+ system_message: str,
52
+ max_tokens: int,
53
+ temperature: float,
54
+ top_p: float,
55
  ):
56
+ system_message = "You are a knowledgeable DBT coach. You always talk about one options at at a time. you add greetings and you ask questions like real counsellor. Remember you are helpful and a good listener. You are concise and never ask multiple questions, or give long response. You response like a human counsellor accurately and correctly. consider the users as your client. and practice verbal cues only where needed. Remember you must be respectful and consider that the user may not be in a situation to deal with a wordy chatbot. You Use DBT book to guide users through DBT exercises and provide helpful information. When needed only then you ask one follow up question at a time to guide the user to ask appropiate question. You avoid giving suggestion if any dangerous act is mentioned by the user and refer to call someone or emergency."
57
  messages = [{"role": "system", "content": system_message}]
58
 
59
  for val in history:
 
64
 
65
  messages.append({"role": "user", "content": message})
66
 
67
+ # RAG - Retrieve relevant documents
68
+ retrieved_docs = app.search_documents(message)
69
+ context = "\n".join(retrieved_docs)
70
+ messages.append({"role": "system", "content": "Relevant documents: " + context})
71
 
72
+ response = ""
73
  for message in client.chat_completion(
74
  messages,
75
  max_tokens=max_tokens,
 
78
  top_p=top_p,
79
  ):
80
  token = message.choices[0].delta.content
 
81
  response += token
82
  yield response
83
+ demo = gr.Blocks()
84
 
85
+ with demo:
86
+ gr.Markdown("🧘‍♀️ **Dialectical Behaviour Therapy**")
87
+ gr.Markdown(
88
+ "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
89
+ "We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
90
+ )
91
+
92
+ chatbot = gr.ChatInterface(
93
+ respond,
94
+ examples=[
95
+ ["I feel overwhelmed with work."],
96
+ ["Can you guide me through a quick meditation?"],
97
+ ["How do I stop worrying about things I can't control?"],
98
+ ["What are some DBT skills for managing anxiety?"],
99
+ ["Can you explain mindfulness in DBT?"],
100
+ ["I am interested in DBT excercises"],
101
+ ["I feel restless. Please help me."],
102
+ ["I have destructive thoughts coming to my mind repetatively."]
103
+ ],
104
+ title='Dialectical Behaviour Therapy Assistant 👩‍⚕️'
105
+ )
 
 
 
 
 
106
 
107
  if __name__ == "__main__":
108
  demo.launch()