Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from typing import List, Tuple
|
4 |
-
import fitz # PyMuPDF
|
5 |
-
from sentence_transformers import SentenceTransformer, util
|
6 |
-
import numpy as np
|
7 |
-
import faiss
|
8 |
|
|
|
|
|
|
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
|
12 |
-
class MyApp:
|
13 |
-
def __init__(self) -> None:
|
14 |
-
self.documents = []
|
15 |
-
self.embeddings = None
|
16 |
-
self.index = None
|
17 |
-
self.load_pdf("YOURPDFFILE")
|
18 |
-
self.build_vector_db()
|
19 |
-
|
20 |
-
def load_pdf(self, file_path: str) -> None:
|
21 |
-
"""Extracts text from a PDF file and stores it in the app's documents."""
|
22 |
-
doc = fitz.open(file_path)
|
23 |
-
self.documents = []
|
24 |
-
for page_num in range(len(doc)):
|
25 |
-
page = doc[page_num]
|
26 |
-
text = page.get_text()
|
27 |
-
self.documents.append({"page": page_num + 1, "content": text})
|
28 |
-
print("PDF processed successfully!")
|
29 |
-
|
30 |
-
|
31 |
-
def build_vector_db(self) -> None:
|
32 |
-
"""Builds a vector database using the content of the PDF."""
|
33 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
34 |
-
# Generate embeddings for all document contents
|
35 |
-
self.embeddings = model.encode([doc["content"] for doc in self.documents])
|
36 |
-
# Create a FAISS index
|
37 |
-
self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
|
38 |
-
# Add the embeddings to the index
|
39 |
-
self.index.add(np.array(self.embeddings))
|
40 |
-
print("Vector database built successfully!")
|
41 |
-
|
42 |
-
def search_documents(self, query: str, k: int = 3) -> List[str]:
|
43 |
-
"""Searches for relevant documents using vector similarity."""
|
44 |
-
model = SentenceTransformer('all-MiniLM-L6-v2')
|
45 |
-
# Generate an embedding for the query
|
46 |
-
query_embedding = model.encode([query])
|
47 |
-
# Perform a search in the FAISS index
|
48 |
-
D, I = self.index.search(np.array(query_embedding), k)
|
49 |
-
# Retrieve the top-k documents
|
50 |
-
results = [self.documents[i]["content"] for i in I[0]]
|
51 |
-
return results if results else ["No relevant documents found."]
|
52 |
-
|
53 |
-
|
54 |
-
app = MyApp()
|
55 |
-
|
56 |
def respond(
|
57 |
-
message
|
58 |
-
history:
|
59 |
-
system_message
|
60 |
-
max_tokens
|
61 |
-
temperature
|
62 |
-
top_p
|
63 |
):
|
64 |
-
system_message = "
|
65 |
messages = [{"role": "system", "content": system_message}]
|
66 |
|
67 |
for val in history:
|
@@ -72,12 +26,8 @@ def respond(
|
|
72 |
|
73 |
messages.append({"role": "user", "content": message})
|
74 |
|
75 |
-
# RAG - Retrieve relevant documents
|
76 |
-
retrieved_docs = app.search_documents(message)
|
77 |
-
context = "\n".join(retrieved_docs)
|
78 |
-
messages.append({"role": "system", "content": "Relevant documents: " + context})
|
79 |
-
|
80 |
response = ""
|
|
|
81 |
for message in client.chat_completion(
|
82 |
messages,
|
83 |
max_tokens=max_tokens,
|
@@ -86,33 +36,36 @@ def respond(
|
|
86 |
top_p=top_p,
|
87 |
):
|
88 |
token = message.choices[0].delta.content
|
|
|
89 |
response += token
|
90 |
yield response
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
with demo:
|
96 |
-
gr.Markdown("🧘♀️ **Dialectical Behaviour Therapy**")
|
97 |
-
gr.Markdown(
|
98 |
-
"‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
|
99 |
-
"We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
|
100 |
-
)
|
101 |
-
|
102 |
-
chatbot = gr.ChatInterface(
|
103 |
-
respond,
|
104 |
-
examples=[
|
105 |
-
["I feel overwhelmed with work."],
|
106 |
-
["Can you guide me through a quick meditation?"],
|
107 |
-
["How do I stop worrying about things I can't control?"],
|
108 |
-
["What are some DBT skills for managing anxiety?"],
|
109 |
-
["Can you explain mindfulness in DBT?"],
|
110 |
-
["I am interested in DBT excercises"],
|
111 |
-
["I feel restless. Please help me."],
|
112 |
-
["I have destructive thoughts coming to my mind repetatively."]
|
113 |
-
],
|
114 |
-
title='Dialectical Behaviour Therapy Assistant 👩⚕️'
|
115 |
-
)
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
+
message,
|
12 |
+
history: list[tuple[str, str]],
|
13 |
+
system_message,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
17 |
):
|
18 |
+
system_message = "I offer mock interviews, personalized feedback, and valuable insights into common interview questions and industry-specific tips. My goal is to boost your confidence, improve your communication skills, and equip you with the tools needed to impress potential employers."
|
19 |
messages = [{"role": "system", "content": system_message}]
|
20 |
|
21 |
for val in history:
|
|
|
26 |
|
27 |
messages.append({"role": "user", "content": message})
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
response = ""
|
30 |
+
|
31 |
for message in client.chat_completion(
|
32 |
messages,
|
33 |
max_tokens=max_tokens,
|
|
|
36 |
top_p=top_p,
|
37 |
):
|
38 |
token = message.choices[0].delta.content
|
39 |
+
|
40 |
response += token
|
41 |
yield response
|
42 |
|
43 |
+
"""
|
44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
"""
|
46 |
+
demo = gr.ChatInterface(
|
47 |
+
respond,
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Textbox(value = "You are a good listener and concise and point-specific speaker. You advise relaxation exercises, suggest avoiding negative thoughts, and guide through steps to manage stress. Discuss what's on your mind, or ask me for a quick relaxation exercise.", label="System message"),
|
50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(
|
53 |
+
minimum=0.1,
|
54 |
+
maximum=1.0,
|
55 |
+
value=0.95,
|
56 |
+
step=0.05,
|
57 |
+
label="Top-p (nucleus sampling)",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
|
61 |
+
examples = [
|
62 |
+
["What are the most common mistakes candidates make during interviews, and how can I avoid them?"],
|
63 |
+
["Do you have any tips for handling nerves or anxiety during interviews?"],
|
64 |
+
["What are effective strategies for answering behavioral interview questions?"]
|
65 |
+
],
|
66 |
+
title = 'Job Interview Prep Coach'
|
67 |
+
)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
demo.launch()
|