File size: 4,525 Bytes
06d3034
 
6dcc294
 
 
 
 
06d3034
 
 
6dcc294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06d3034
 
6dcc294
 
 
 
 
 
06d3034
aa91235
06d3034
 
 
 
 
 
 
 
 
 
6dcc294
 
 
 
06d3034
6dcc294
06d3034
 
 
 
 
 
 
 
 
 
 
6dcc294
06d3034
6dcc294
aa91235
6dcc294
 
 
 
 
 
 
 
aa91235
 
 
 
 
 
 
 
6dcc294
aa91235
6dcc294
06d3034
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
from huggingface_hub import InferenceClient
from typing import List, Tuple
import fitz  # PyMuPDF
from sentence_transformers import SentenceTransformer, util
import numpy as np
import faiss

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

class MyApp:
    def __init__(self) -> None:
        self.documents = []
        self.embeddings = None
        self.index = None
        self.load_pdf("YOURPDFFILE")
        self.build_vector_db()

    def load_pdf(self, file_path: str) -> None:
        """Extracts text from a PDF file and stores it in the app's documents."""
        doc = fitz.open(file_path)
        self.documents = []
        for page_num in range(len(doc)):
            page = doc[page_num]
            text = page.get_text()
            self.documents.append({"page": page_num + 1, "content": text})
        print("PDF processed successfully!")

        def build_vector_db(self) -> None:
        """Builds a vector database using the content of the PDF."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        # Generate embeddings for all document contents
        self.embeddings = model.encode([doc["content"] for doc in self.documents])
        # Create a FAISS index
        self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
        # Add the embeddings to the index
        self.index.add(np.array(self.embeddings))
        print("Vector database built successfully!")

        def search_documents(self, query: str, k: int = 3) -> List[str]:
        """Searches for relevant documents using vector similarity."""
        model = SentenceTransformer('all-MiniLM-L6-v2')
        # Generate an embedding for the query
        query_embedding = model.encode([query])
        # Perform a search in the FAISS index
        D, I = self.index.search(np.array(query_embedding), k)
        # Retrieve the top-k documents
        results = [self.documents[i]["content"] for i in I[0]]
        return results if results else ["No relevant documents found."]

        app = MyApp()

def respond(
    message: str,
    history: List[Tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    system_message = "I’m a Job Interview Prep Coach, specializing in personalized strategies to boost interview performance. I offer resume reviews, mock interviews, and expert advice to help you land your ideal job confidently."
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    # RAG - Retrieve relevant documents
    retrieved_docs = app.search_documents(message)
    context = "\n".join(retrieved_docs)
    messages.append({"role": "system", "content": "Relevant documents: " + context})

    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

        demo = gr.Blocks()

with demo:
    gr.Markdown("🧘‍♀️ **Job Interview Prep Coach**")
    gr.Markdown(
        "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
        "We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
    )
    
    chatbot = gr.ChatInterface(
        respond,
        examples=[
            ["How can I effectively prepare for a job interview?"],
            ["What are the most common interview questions, and how should I answer them?"],
            ["How can I improve my resume and cover letter to increase my chances of getting an interview?"],
            ["What should I do if I get a difficult or unexpected question during an interview?"],
            ["How can I demonstrate my skills and experiences effectively during the interview?"],
            ["How do I handle interview nerves and maintain confidence throughout the process"],
            ["What questions should I ask the interviewer to make a positive impression?"],
            ["How can I tailor my answers to align with the company’s values and culture?."]
        ],
        title='Job Interview Prep Coach'
    )

if __name__ == "__main__":
    demo.launch()