import gradio as gr from huggingface_hub import InferenceClient from typing import List, Tuple import fitz # PyMuPDF from sentence_transformers import SentenceTransformer, util import numpy as np import faiss client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") class MyApp: def __init__(self) -> None: self.documents = [] self.embeddings = None self.index = None self.load_pdf("YOURPDFFILE") self.build_vector_db() def load_pdf(self, file_path: str) -> None: """Extracts text from a PDF file and stores it in the app's documents.""" doc = fitz.open(file_path) self.documents = [] for page_num in range(len(doc)): page = doc[page_num] text = page.get_text() self.documents.append({"page": page_num + 1, "content": text}) print("PDF processed successfully!") def build_vector_db(self) -> None: model = SentenceTransformer('all-MiniLM-L6-v2') # Generate embeddings for all document contents self.embeddings = model.encode([doc["content"] for doc in self.documents]) # Create a FAISS index self.index = faiss.IndexFlatL2(self.embeddings.shape[1]) # Add the embeddings to the index self.index.add(np.array(self.embeddings)) print("Vector database built successfully!") def search_documents(self, query: str, k: int = 3) -> List[str]: """Searches for relevant documents using vector similarity.""" model = SentenceTransformer('all-MiniLM-L6-v2') # Generate an embedding for the query query_embedding = model.encode([query]) # Perform a search in the FAISS index D, I = self.index.search(np.array(query_embedding), k) # Retrieve the top-k documents results = [self.documents[i]["content"] for i in I[0]] return results if results else ["No relevant documents found."] app = MyApp() def respond( message: str, history: List[Tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): system_message = "I’m a Job Interview Prep Coach, specializing in personalized strategies to boost interview performance. I offer resume reviews, mock interviews, and expert advice to help you land your ideal job confidently." messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # RAG - Retrieve relevant documents retrieved_docs = app.search_documents(message) context = "\n".join(retrieved_docs) messages.append({"role": "system", "content": "Relevant documents: " + context}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.Blocks() with demo: gr.Markdown("🧘‍♀️ **Job Interview Prep Coach**") gr.Markdown( "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. " "We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️" ) chatbot = gr.ChatInterface( respond, examples=[ ["How can I effectively prepare for a job interview?"], ["What are the most common interview questions, and how should I answer them?"], ["How can I improve my resume and cover letter to increase my chances of getting an interview?"], ["What should I do if I get a difficult or unexpected question during an interview?"], ["How can I demonstrate my skills and experiences effectively during the interview?"], ["How do I handle interview nerves and maintain confidence throughout the process"], ["What questions should I ask the interviewer to make a positive impression?"], ["How can I tailor my answers to align with the company’s values and culture?."] ], title='Job Interview Prep Coach' ) if __name__ == "__main__": demo.launch()