Spaces:
Running
Running
"""Exports a YOLOv5 *.pt model to TorchScript, ONNX, CoreML formats | |
Usage: | |
$ python path/to/models/export.py --weights yolov5s.pt --img 640 --batch 1 | |
""" | |
import argparse | |
import sys | |
import time | |
from pathlib import Path | |
sys.path.append(Path(__file__).parent.parent.absolute().__str__()) # to run '$ python *.py' files in subdirectories | |
import torch | |
import torch.nn as nn | |
from torch.utils.mobile_optimizer import optimize_for_mobile | |
import models | |
from models.experimental import attempt_load | |
from utils.activations import Hardswish, SiLU | |
from utils.general import colorstr, check_img_size, check_requirements, file_size, set_logging | |
from utils.torch_utils import select_device | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') | |
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width | |
parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx', 'coreml'], help='include formats') | |
parser.add_argument('--half', action='store_true', help='FP16 half-precision export') | |
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') | |
parser.add_argument('--train', action='store_true', help='model.train() mode') | |
parser.add_argument('--optimize', action='store_true', help='optimize TorchScript for mobile') # TorchScript-only | |
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes') # ONNX-only | |
parser.add_argument('--simplify', action='store_true', help='simplify ONNX model') # ONNX-only | |
parser.add_argument('--opset-version', type=int, default=12, help='ONNX opset version') # ONNX-only | |
opt = parser.parse_args() | |
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand | |
opt.include = [x.lower() for x in opt.include] | |
print(opt) | |
set_logging() | |
t = time.time() | |
# Load PyTorch model | |
device = select_device(opt.device) | |
model = attempt_load(opt.weights, map_location=device) # load FP32 model | |
labels = model.names | |
# Checks | |
gs = int(max(model.stride)) # grid size (max stride) | |
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples | |
assert not (opt.device.lower() == 'cpu' and opt.half), '--half only compatible with GPU export, i.e. use --device 0' | |
# Input | |
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection | |
# Update model | |
if opt.half: | |
img, model = img.half(), model.half() # to FP16 | |
if opt.train: | |
model.train() # training mode (no grid construction in Detect layer) | |
for k, m in model.named_modules(): | |
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility | |
if isinstance(m, models.common.Conv): # assign export-friendly activations | |
if isinstance(m.act, nn.Hardswish): | |
m.act = Hardswish() | |
elif isinstance(m.act, nn.SiLU): | |
m.act = SiLU() | |
elif isinstance(m, models.yolo.Detect): | |
m.inplace = opt.inplace | |
m.onnx_dynamic = opt.dynamic | |
# m.forward = m.forward_export # assign forward (optional) | |
for _ in range(2): | |
y = model(img) # dry runs | |
print(f"\n{colorstr('PyTorch:')} starting from {opt.weights} ({file_size(opt.weights):.1f} MB)") | |
# TorchScript export ----------------------------------------------------------------------------------------------- | |
if 'torchscript' in opt.include or 'coreml' in opt.include: | |
prefix = colorstr('TorchScript:') | |
try: | |
print(f'\n{prefix} starting export with torch {torch.__version__}...') | |
f = opt.weights.replace('.pt', '.torchscript.pt') # filename | |
ts = torch.jit.trace(model, img, strict=False) | |
(optimize_for_mobile(ts) if opt.optimize else ts).save(f) | |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') | |
except Exception as e: | |
print(f'{prefix} export failure: {e}') | |
# ONNX export ------------------------------------------------------------------------------------------------------ | |
if 'onnx' in opt.include: | |
prefix = colorstr('ONNX:') | |
try: | |
import onnx | |
print(f'{prefix} starting export with onnx {onnx.__version__}...') | |
f = opt.weights.replace('.pt', '.onnx') # filename | |
torch.onnx.export(model, img, f, verbose=False, opset_version=opt.opset_version, input_names=['images'], | |
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640) | |
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None) | |
# Checks | |
model_onnx = onnx.load(f) # load onnx model | |
onnx.checker.check_model(model_onnx) # check onnx model | |
# print(onnx.helper.printable_graph(model_onnx.graph)) # print | |
# Simplify | |
if opt.simplify: | |
try: | |
check_requirements(['onnx-simplifier']) | |
import onnxsim | |
print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') | |
model_onnx, check = onnxsim.simplify( | |
model_onnx, | |
dynamic_input_shape=opt.dynamic, | |
input_shapes={'images': list(img.shape)} if opt.dynamic else None) | |
assert check, 'assert check failed' | |
onnx.save(model_onnx, f) | |
except Exception as e: | |
print(f'{prefix} simplifier failure: {e}') | |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') | |
except Exception as e: | |
print(f'{prefix} export failure: {e}') | |
# CoreML export ---------------------------------------------------------------------------------------------------- | |
if 'coreml' in opt.include: | |
prefix = colorstr('CoreML:') | |
try: | |
import coremltools as ct | |
print(f'{prefix} starting export with coremltools {ct.__version__}...') | |
assert opt.train, 'CoreML exports should be placed in model.train() mode with `python export.py --train`' | |
model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])]) | |
f = opt.weights.replace('.pt', '.mlmodel') # filename | |
model.save(f) | |
print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') | |
except Exception as e: | |
print(f'{prefix} export failure: {e}') | |
# Finish | |
print(f'\nExport complete ({time.time() - t:.2f}s). Visualize with https://github.com/lutzroeder/netron.') | |