Spaces:
Sleeping
Sleeping
# Plotting utils | |
import glob | |
import math | |
import os | |
import random | |
from copy import copy | |
from pathlib import Path | |
import cv2 | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import torch | |
import yaml | |
from PIL import Image, ImageDraw, ImageFont | |
from Yolov5_Deepsort.utils.general import xywh2xyxy, xyxy2xywh | |
from Yolov5_Deepsort.utils.metrics import fitness | |
# Settings | |
matplotlib.rc('font', **{'size': 11}) | |
matplotlib.use('Agg') # for writing to files only | |
class Colors: | |
# Ultralytics color palette https://ultralytics.com/ | |
def __init__(self): | |
# hex = matplotlib.colors.TABLEAU_COLORS.values() | |
hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', | |
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') | |
self.palette = [self.hex2rgb('#' + c) for c in hex] | |
self.n = len(self.palette) | |
def __call__(self, i, bgr=False): | |
c = self.palette[int(i) % self.n] | |
return (c[2], c[1], c[0]) if bgr else c | |
def hex2rgb(h): # rgb order (PIL) | |
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |
colors = Colors() # create instance for 'from utils.plots import colors' | |
def hist2d(x, y, n=100): | |
# 2d histogram used in labels.png and evolve.png | |
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) | |
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) | |
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) | |
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) | |
return np.log(hist[xidx, yidx]) | |
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): | |
from scipy.signal import butter, filtfilt | |
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy | |
def butter_lowpass(cutoff, fs, order): | |
nyq = 0.5 * fs | |
normal_cutoff = cutoff / nyq | |
return butter(order, normal_cutoff, btype='low', analog=False) | |
b, a = butter_lowpass(cutoff, fs, order=order) | |
return filtfilt(b, a, data) # forward-backward filter | |
def plot_one_box(x, im, color=(128, 128, 128), label=None, line_thickness=3): | |
# Plots one bounding box on image 'im' using OpenCV | |
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to plot_on_box() input image.' | |
tl = line_thickness or round(0.002 * (im.shape[0] + im.shape[1]) / 2) + 1 # line/font thickness | |
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) | |
cv2.rectangle(im, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) | |
if label: | |
tf = max(tl - 1, 1) # font thickness | |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 | |
cv2.rectangle(im, c1, c2, color, -1, cv2.LINE_AA) # filled | |
cv2.putText(im, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) | |
def plot_one_box_PIL(box, im, color=(128, 128, 128), label=None, line_thickness=None): | |
# Plots one bounding box on image 'im' using PIL | |
im = Image.fromarray(im) | |
draw = ImageDraw.Draw(im) | |
line_thickness = line_thickness or max(int(min(im.size) / 200), 2) | |
draw.rectangle(box, width=line_thickness, outline=color) # plot | |
if label: | |
font = ImageFont.truetype("Arial.ttf", size=max(round(max(im.size) / 40), 12)) | |
txt_width, txt_height = font.getsize(label) | |
draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=color) | |
draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font) | |
return np.asarray(im) | |
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods() | |
# Compares the two methods for width-height anchor multiplication | |
# https://github.com/ultralytics/yolov3/issues/168 | |
x = np.arange(-4.0, 4.0, .1) | |
ya = np.exp(x) | |
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 | |
fig = plt.figure(figsize=(6, 3), tight_layout=True) | |
plt.plot(x, ya, '.-', label='YOLOv3') | |
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2') | |
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6') | |
plt.xlim(left=-4, right=4) | |
plt.ylim(bottom=0, top=6) | |
plt.xlabel('input') | |
plt.ylabel('output') | |
plt.grid() | |
plt.legend() | |
fig.savefig('comparison.png', dpi=200) | |
def output_to_target(output): | |
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf] | |
targets = [] | |
for i, o in enumerate(output): | |
for *box, conf, cls in o.cpu().numpy(): | |
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) | |
return np.array(targets) | |
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): | |
# Plot image grid with labels | |
if isinstance(images, torch.Tensor): | |
images = images.cpu().float().numpy() | |
if isinstance(targets, torch.Tensor): | |
targets = targets.cpu().numpy() | |
# un-normalise | |
if np.max(images[0]) <= 1: | |
images *= 255 | |
tl = 3 # line thickness | |
tf = max(tl - 1, 1) # font thickness | |
bs, _, h, w = images.shape # batch size, _, height, width | |
bs = min(bs, max_subplots) # limit plot images | |
ns = np.ceil(bs ** 0.5) # number of subplots (square) | |
# Check if we should resize | |
scale_factor = max_size / max(h, w) | |
if scale_factor < 1: | |
h = math.ceil(scale_factor * h) | |
w = math.ceil(scale_factor * w) | |
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |
for i, img in enumerate(images): | |
if i == max_subplots: # if last batch has fewer images than we expect | |
break | |
block_x = int(w * (i // ns)) | |
block_y = int(h * (i % ns)) | |
img = img.transpose(1, 2, 0) | |
if scale_factor < 1: | |
img = cv2.resize(img, (w, h)) | |
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img | |
if len(targets) > 0: | |
image_targets = targets[targets[:, 0] == i] | |
boxes = xywh2xyxy(image_targets[:, 2:6]).T | |
classes = image_targets[:, 1].astype('int') | |
labels = image_targets.shape[1] == 6 # labels if no conf column | |
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred) | |
if boxes.shape[1]: | |
if boxes.max() <= 1.01: # if normalized with tolerance 0.01 | |
boxes[[0, 2]] *= w # scale to pixels | |
boxes[[1, 3]] *= h | |
elif scale_factor < 1: # absolute coords need scale if image scales | |
boxes *= scale_factor | |
boxes[[0, 2]] += block_x | |
boxes[[1, 3]] += block_y | |
for j, box in enumerate(boxes.T): | |
cls = int(classes[j]) | |
color = colors(cls) | |
cls = names[cls] if names else cls | |
if labels or conf[j] > 0.25: # 0.25 conf thresh | |
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j]) | |
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) | |
# Draw image filename labels | |
if paths: | |
label = Path(paths[i]).name[:40] # trim to 40 char | |
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] | |
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, | |
lineType=cv2.LINE_AA) | |
# Image border | |
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) | |
if fname: | |
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size | |
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA) | |
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save | |
Image.fromarray(mosaic).save(fname) # PIL save | |
return mosaic | |
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): | |
# Plot LR simulating training for full epochs | |
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals | |
y = [] | |
for _ in range(epochs): | |
scheduler.step() | |
y.append(optimizer.param_groups[0]['lr']) | |
plt.plot(y, '.-', label='LR') | |
plt.xlabel('epoch') | |
plt.ylabel('LR') | |
plt.grid() | |
plt.xlim(0, epochs) | |
plt.ylim(0) | |
plt.savefig(Path(save_dir) / 'LR.png', dpi=200) | |
plt.close() | |
def plot_test_txt(): # from utils.plots import *; plot_test() | |
# Plot test.txt histograms | |
x = np.loadtxt('test.txt', dtype=np.float32) | |
box = xyxy2xywh(x[:, :4]) | |
cx, cy = box[:, 0], box[:, 1] | |
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) | |
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) | |
ax.set_aspect('equal') | |
plt.savefig('hist2d.png', dpi=300) | |
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) | |
ax[0].hist(cx, bins=600) | |
ax[1].hist(cy, bins=600) | |
plt.savefig('hist1d.png', dpi=200) | |
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() | |
# Plot targets.txt histograms | |
x = np.loadtxt('targets.txt', dtype=np.float32).T | |
s = ['x targets', 'y targets', 'width targets', 'height targets'] | |
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) | |
ax = ax.ravel() | |
for i in range(4): | |
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) | |
ax[i].legend() | |
ax[i].set_title(s[i]) | |
plt.savefig('targets.jpg', dpi=200) | |
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt() | |
# Plot study.txt generated by test.py | |
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) | |
# ax = ax.ravel() | |
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) | |
# for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: | |
for f in sorted(Path(path).glob('study*.txt')): | |
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T | |
x = np.arange(y.shape[1]) if x is None else np.array(x) | |
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] | |
# for i in range(7): | |
# ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) | |
# ax[i].set_title(s[i]) | |
j = y[3].argmax() + 1 | |
ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8, | |
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) | |
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], | |
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') | |
ax2.grid(alpha=0.2) | |
ax2.set_yticks(np.arange(20, 60, 5)) | |
ax2.set_xlim(0, 57) | |
ax2.set_ylim(30, 55) | |
ax2.set_xlabel('GPU Speed (ms/img)') | |
ax2.set_ylabel('COCO AP val') | |
ax2.legend(loc='lower right') | |
plt.savefig(str(Path(path).name) + '.png', dpi=300) | |
def plot_labels(labels, names=(), save_dir=Path(''), loggers=None): | |
# plot dataset labels | |
print('Plotting labels... ') | |
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes | |
nc = int(c.max() + 1) # number of classes | |
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) | |
# seaborn correlogram | |
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) | |
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) | |
plt.close() | |
# matplotlib labels | |
matplotlib.use('svg') # faster | |
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() | |
y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |
# [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # update colors bug #3195 | |
ax[0].set_ylabel('instances') | |
if 0 < len(names) < 30: | |
ax[0].set_xticks(range(len(names))) | |
ax[0].set_xticklabels(names, rotation=90, fontsize=10) | |
else: | |
ax[0].set_xlabel('classes') | |
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) | |
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) | |
# rectangles | |
labels[:, 1:3] = 0.5 # center | |
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 | |
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) | |
for cls, *box in labels[:1000]: | |
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot | |
ax[1].imshow(img) | |
ax[1].axis('off') | |
for a in [0, 1, 2, 3]: | |
for s in ['top', 'right', 'left', 'bottom']: | |
ax[a].spines[s].set_visible(False) | |
plt.savefig(save_dir / 'labels.jpg', dpi=200) | |
matplotlib.use('Agg') | |
plt.close() | |
# loggers | |
for k, v in loggers.items() or {}: | |
if k == 'wandb' and v: | |
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False) | |
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution() | |
# Plot hyperparameter evolution results in evolve.txt | |
with open(yaml_file) as f: | |
hyp = yaml.safe_load(f) | |
x = np.loadtxt('evolve.txt', ndmin=2) | |
f = fitness(x) | |
# weights = (f - f.min()) ** 2 # for weighted results | |
plt.figure(figsize=(10, 12), tight_layout=True) | |
matplotlib.rc('font', **{'size': 8}) | |
for i, (k, v) in enumerate(hyp.items()): | |
y = x[:, i + 7] | |
# mu = (y * weights).sum() / weights.sum() # best weighted result | |
mu = y[f.argmax()] # best single result | |
plt.subplot(6, 5, i + 1) | |
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') | |
plt.plot(mu, f.max(), 'k+', markersize=15) | |
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters | |
if i % 5 != 0: | |
plt.yticks([]) | |
print('%15s: %.3g' % (k, mu)) | |
plt.savefig('evolve.png', dpi=200) | |
print('\nPlot saved as evolve.png') | |
def profile_idetection(start=0, stop=0, labels=(), save_dir=''): | |
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() | |
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() | |
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] | |
files = list(Path(save_dir).glob('frames*.txt')) | |
for fi, f in enumerate(files): | |
try: | |
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows | |
n = results.shape[1] # number of rows | |
x = np.arange(start, min(stop, n) if stop else n) | |
results = results[:, x] | |
t = (results[0] - results[0].min()) # set t0=0s | |
results[0] = x | |
for i, a in enumerate(ax): | |
if i < len(results): | |
label = labels[fi] if len(labels) else f.stem.replace('frames_', '') | |
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) | |
a.set_title(s[i]) | |
a.set_xlabel('time (s)') | |
# if fi == len(files) - 1: | |
# a.set_ylim(bottom=0) | |
for side in ['top', 'right']: | |
a.spines[side].set_visible(False) | |
else: | |
a.remove() | |
except Exception as e: | |
print('Warning: Plotting error for %s; %s' % (f, e)) | |
ax[1].legend() | |
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) | |
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay() | |
# Plot training 'results*.txt', overlaying train and val losses | |
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends | |
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles | |
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): | |
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |
n = results.shape[1] # number of rows | |
x = range(start, min(stop, n) if stop else n) | |
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) | |
ax = ax.ravel() | |
for i in range(5): | |
for j in [i, i + 5]: | |
y = results[j, x] | |
ax[i].plot(x, y, marker='.', label=s[j]) | |
# y_smooth = butter_lowpass_filtfilt(y) | |
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j]) | |
ax[i].set_title(t[i]) | |
ax[i].legend() | |
ax[i].set_ylabel(f) if i == 0 else None # add filename | |
fig.savefig(f.replace('.txt', '.png'), dpi=200) | |
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): | |
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp') | |
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) | |
ax = ax.ravel() | |
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall', | |
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] | |
if bucket: | |
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id] | |
files = ['results%g.txt' % x for x in id] | |
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id) | |
os.system(c) | |
else: | |
files = list(Path(save_dir).glob('results*.txt')) | |
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir) | |
for fi, f in enumerate(files): | |
try: | |
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T | |
n = results.shape[1] # number of rows | |
x = range(start, min(stop, n) if stop else n) | |
for i in range(10): | |
y = results[i, x] | |
if i in [0, 1, 2, 5, 6, 7]: | |
y[y == 0] = np.nan # don't show zero loss values | |
# y /= y[0] # normalize | |
label = labels[fi] if len(labels) else f.stem | |
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8) | |
ax[i].set_title(s[i]) | |
# if i in [5, 6, 7]: # share train and val loss y axes | |
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |
except Exception as e: | |
print('Warning: Plotting error for %s; %s' % (f, e)) | |
ax[1].legend() | |
fig.savefig(Path(save_dir) / 'results.png', dpi=200) | |