Spaces:
Running
Running
# YOLOv5 common modules | |
import math | |
from copy import copy | |
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import requests | |
import torch | |
import torch.nn as nn | |
from PIL import Image | |
from torch.cuda import amp | |
from utils.datasets import letterbox | |
from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box | |
from utils.plots import colors, plot_one_box | |
from utils.torch_utils import time_synchronized | |
def autopad(k, p=None): # kernel, padding | |
# Pad to 'same' | |
if p is None: | |
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad | |
return p | |
def DWConv(c1, c2, k=1, s=1, act=True): | |
# Depthwise convolution | |
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act) | |
class Conv(nn.Module): | |
# Standard convolution | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super(Conv, self).__init__() | |
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | |
self.bn = nn.BatchNorm2d(c2) | |
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) | |
def forward(self, x): | |
return self.act(self.bn(self.conv(x))) | |
def fuseforward(self, x): | |
return self.act(self.conv(x)) | |
class TransformerLayer(nn.Module): | |
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) | |
def __init__(self, c, num_heads): | |
super().__init__() | |
self.q = nn.Linear(c, c, bias=False) | |
self.k = nn.Linear(c, c, bias=False) | |
self.v = nn.Linear(c, c, bias=False) | |
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) | |
self.fc1 = nn.Linear(c, c, bias=False) | |
self.fc2 = nn.Linear(c, c, bias=False) | |
def forward(self, x): | |
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x | |
x = self.fc2(self.fc1(x)) + x | |
return x | |
class TransformerBlock(nn.Module): | |
# Vision Transformer https://arxiv.org/abs/2010.11929 | |
def __init__(self, c1, c2, num_heads, num_layers): | |
super().__init__() | |
self.conv = None | |
if c1 != c2: | |
self.conv = Conv(c1, c2) | |
self.linear = nn.Linear(c2, c2) # learnable position embedding | |
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)]) | |
self.c2 = c2 | |
def forward(self, x): | |
if self.conv is not None: | |
x = self.conv(x) | |
b, _, w, h = x.shape | |
p = x.flatten(2) | |
p = p.unsqueeze(0) | |
p = p.transpose(0, 3) | |
p = p.squeeze(3) | |
e = self.linear(p) | |
x = p + e | |
x = self.tr(x) | |
x = x.unsqueeze(3) | |
x = x.transpose(0, 3) | |
x = x.reshape(b, self.c2, w, h) | |
return x | |
class Bottleneck(nn.Module): | |
# Standard bottleneck | |
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion | |
super(Bottleneck, self).__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_, c2, 3, 1, g=g) | |
self.add = shortcut and c1 == c2 | |
def forward(self, x): | |
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | |
class BottleneckCSP(nn.Module): | |
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super(BottleneckCSP, self).__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) | |
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) | |
self.cv4 = Conv(2 * c_, c2, 1, 1) | |
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) | |
self.act = nn.LeakyReLU(0.1, inplace=True) | |
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | |
def forward(self, x): | |
y1 = self.cv3(self.m(self.cv1(x))) | |
y2 = self.cv2(x) | |
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) | |
class C3(nn.Module): | |
# CSP Bottleneck with 3 convolutions | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion | |
super(C3, self).__init__() | |
c_ = int(c2 * e) # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c1, c_, 1, 1) | |
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) | |
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | |
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) | |
def forward(self, x): | |
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) | |
class C3TR(C3): | |
# C3 module with TransformerBlock() | |
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): | |
super().__init__(c1, c2, n, shortcut, g, e) | |
c_ = int(c2 * e) | |
self.m = TransformerBlock(c_, c_, 4, n) | |
class SPP(nn.Module): | |
# Spatial pyramid pooling layer used in YOLOv3-SPP | |
def __init__(self, c1, c2, k=(5, 9, 13)): | |
super(SPP, self).__init__() | |
c_ = c1 // 2 # hidden channels | |
self.cv1 = Conv(c1, c_, 1, 1) | |
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) | |
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) | |
def forward(self, x): | |
x = self.cv1(x) | |
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) | |
class Focus(nn.Module): | |
# Focus wh information into c-space | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups | |
super(Focus, self).__init__() | |
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) | |
# self.contract = Contract(gain=2) | |
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) | |
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) | |
# return self.conv(self.contract(x)) | |
class Contract(nn.Module): | |
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) | |
def __init__(self, gain=2): | |
super().__init__() | |
self.gain = gain | |
def forward(self, x): | |
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain' | |
s = self.gain | |
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2) | |
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) | |
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40) | |
class Expand(nn.Module): | |
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) | |
def __init__(self, gain=2): | |
super().__init__() | |
self.gain = gain | |
def forward(self, x): | |
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' | |
s = self.gain | |
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80) | |
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) | |
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160) | |
class Concat(nn.Module): | |
# Concatenate a list of tensors along dimension | |
def __init__(self, dimension=1): | |
super(Concat, self).__init__() | |
self.d = dimension | |
def forward(self, x): | |
return torch.cat(x, self.d) | |
class NMS(nn.Module): | |
# Non-Maximum Suppression (NMS) module | |
conf = 0.25 # confidence threshold | |
iou = 0.45 # IoU threshold | |
classes = None # (optional list) filter by class | |
max_det = 1000 # maximum number of detections per image | |
def __init__(self): | |
super(NMS, self).__init__() | |
def forward(self, x): | |
return non_max_suppression(x[0], self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) | |
class AutoShape(nn.Module): | |
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS | |
conf = 0.25 # NMS confidence threshold | |
iou = 0.45 # NMS IoU threshold | |
classes = None # (optional list) filter by class | |
max_det = 1000 # maximum number of detections per image | |
def __init__(self, model): | |
super(AutoShape, self).__init__() | |
self.model = model.eval() | |
def autoshape(self): | |
print('AutoShape already enabled, skipping... ') # model already converted to model.autoshape() | |
return self | |
def forward(self, imgs, size=640, augment=False, profile=False): | |
# Inference from various sources. For height=640, width=1280, RGB images example inputs are: | |
# filename: imgs = 'data/images/zidane.jpg' | |
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg' | |
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) | |
# PIL: = Image.open('image.jpg') # HWC x(640,1280,3) | |
# numpy: = np.zeros((640,1280,3)) # HWC | |
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) | |
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images | |
t = [time_synchronized()] | |
p = next(self.model.parameters()) # for device and type | |
if isinstance(imgs, torch.Tensor): # torch | |
with amp.autocast(enabled=p.device.type != 'cpu'): | |
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference | |
# Pre-process | |
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images | |
shape0, shape1, files = [], [], [] # image and inference shapes, filenames | |
for i, im in enumerate(imgs): | |
f = f'image{i}' # filename | |
if isinstance(im, str): # filename or uri | |
im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im | |
elif isinstance(im, Image.Image): # PIL Image | |
im, f = np.asarray(im), getattr(im, 'filename', f) or f | |
files.append(Path(f).with_suffix('.jpg').name) | |
if im.shape[0] < 5: # image in CHW | |
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) | |
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input | |
s = im.shape[:2] # HWC | |
shape0.append(s) # image shape | |
g = (size / max(s)) # gain | |
shape1.append([y * g for y in s]) | |
imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update | |
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape | |
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad | |
x = np.stack(x, 0) if n > 1 else x[0][None] # stack | |
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW | |
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 | |
t.append(time_synchronized()) | |
with amp.autocast(enabled=p.device.type != 'cpu'): | |
# Inference | |
y = self.model(x, augment, profile)[0] # forward | |
t.append(time_synchronized()) | |
# Post-process | |
y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS | |
for i in range(n): | |
scale_coords(shape1, y[i][:, :4], shape0[i]) | |
t.append(time_synchronized()) | |
return Detections(imgs, y, files, t, self.names, x.shape) | |
class Detections: | |
# detections class for YOLOv5 inference results | |
def __init__(self, imgs, pred, files, times=None, names=None, shape=None): | |
super(Detections, self).__init__() | |
d = pred[0].device # device | |
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations | |
self.imgs = imgs # list of images as numpy arrays | |
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) | |
self.names = names # class names | |
self.files = files # image filenames | |
self.xyxy = pred # xyxy pixels | |
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels | |
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized | |
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized | |
self.n = len(self.pred) # number of images (batch size) | |
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) | |
self.s = shape # inference BCHW shape | |
def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')): | |
for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): | |
str = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' | |
if pred is not None: | |
for c in pred[:, -1].unique(): | |
n = (pred[:, -1] == c).sum() # detections per class | |
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string | |
if show or save or render or crop: | |
for *box, conf, cls in pred: # xyxy, confidence, class | |
label = f'{self.names[int(cls)]} {conf:.2f}' | |
if crop: | |
save_one_box(box, im, file=save_dir / 'crops' / self.names[int(cls)] / self.files[i]) | |
else: # all others | |
plot_one_box(box, im, label=label, color=colors(cls)) | |
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np | |
if pprint: | |
print(str.rstrip(', ')) | |
if show: | |
im.show(self.files[i]) # show | |
if save: | |
f = self.files[i] | |
im.save(save_dir / f) # save | |
print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n') | |
if render: | |
self.imgs[i] = np.asarray(im) | |
def print(self): | |
self.display(pprint=True) # print results | |
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) | |
def show(self): | |
self.display(show=True) # show results | |
def save(self, save_dir='runs/hub/exp'): | |
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir | |
self.display(save=True, save_dir=save_dir) # save results | |
def crop(self, save_dir='runs/hub/exp'): | |
save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir | |
self.display(crop=True, save_dir=save_dir) # crop results | |
print(f'Saved results to {save_dir}\n') | |
def render(self): | |
self.display(render=True) # render results | |
return self.imgs | |
def pandas(self): | |
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) | |
new = copy(self) # return copy | |
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns | |
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns | |
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): | |
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update | |
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) | |
return new | |
def tolist(self): | |
# return a list of Detections objects, i.e. 'for result in results.tolist():' | |
x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)] | |
for d in x: | |
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: | |
setattr(d, k, getattr(d, k)[0]) # pop out of list | |
return x | |
def __len__(self): | |
return self.n | |
class Classify(nn.Module): | |
# Classification head, i.e. x(b,c1,20,20) to x(b,c2) | |
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups | |
super(Classify, self).__init__() | |
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) | |
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) | |
self.flat = nn.Flatten() | |
def forward(self, x): | |
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list | |
return self.flat(self.conv(z)) # flatten to x(b,c2) | |